Representations of finite sets and correspondences

Serge Bouc

CNRS-LAMFA
Université de Picardie
joint work with
Jacques Thévenaz
EPFL

ICRA 2018

Correspondences, Relations

Correspondences, Relations

- Let X and Y be finite sets.

Correspondences, Relations

- Let X and Y be finite sets. A correspondence from X to Y

Correspondences, Relations

- Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$.

Correspondences, Relations

- Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y.

Correspondences, Relations

- Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.

Correspondences, Relations

- Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed:

Correspondences, Relations

- Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$

Correspondences, Relations

- Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$
S \circ R
$$

Correspondences, Relations

- Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$
S \circ R(=S R)
$$

Correspondences, Relations

- Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$
S \circ R(=S R)=\{(z, x) \in Z \times X \mid \exists y \in Y,(z, y) \in S,(y, x) \in R\}
$$

Correspondences, Relations

- Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$
S \circ R(=S R)=\{(z, x) \in Z \times X \mid \exists y \in Y,(z, y) \in S,(y, x) \in R\}
$$

This composition is associative.

Correspondences, Relations

- Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$
S \circ R(=S R)=\{(z, x) \in Z \times X \mid \exists y \in Y,(z, y) \in S,(y, x) \in R\}
$$

This composition is associative.

- In particular $\mathcal{C}(X, X)$ is a monoid

Correspondences, Relations

- Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$
S \circ R(=S R)=\{(z, x) \in Z \times X \mid \exists y \in Y,(z, y) \in S,(y, x) \in R\}
$$

This composition is associative.

- In particular $\mathcal{C}(X, X)$ is a monoid, with identity element

$$
\Delta_{X}=\{(x, x) \mid x \in X\} \subseteq X \times X
$$

Correspondences, Relations

- Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$
S \circ R(=S R)=\{(z, x) \in Z \times X \mid \exists y \in Y,(z, y) \in S,(y, x) \in R\}
$$

This composition is associative.

- In particular $\mathcal{C}(X, X)$ is a monoid, with identity element

$$
\Delta_{X}=\{(x, x) \mid x \in X\} \subseteq X \times X
$$

More generally

Correspondences, Relations

- Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$
S \circ R(=S R)=\{(z, x) \in Z \times X \mid \exists y \in Y,(z, y) \in S,(y, x) \in R\}
$$

This composition is associative.

- In particular $\mathcal{C}(X, X)$ is a monoid, with identity element

$$
\Delta_{X}=\{(x, x) \mid x \in X\} \subseteq X \times X
$$

More generally
$R \circ \Delta_{X}=R$ for any Y and any $R \in \mathcal{C}(Y, X)$

Correspondences, Relations

- Let X and Y be finite sets. A correspondence from X to Y is a subset of $Y \times X$. Let $\mathcal{C}(Y, X)$ denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$
S \circ R(=S R)=\{(z, x) \in Z \times X \mid \exists y \in Y,(z, y) \in S,(y, x) \in R\}
$$

This composition is associative.

- In particular $\mathcal{C}(X, X)$ is a monoid, with identity element

$$
\Delta_{X}=\{(x, x) \mid x \in X\} \subseteq X \times X
$$

More generally
$R \circ \Delta_{X}=R$ for any Y and any $R \in \mathcal{C}(Y, X)$,
$\Delta_{X} \circ S=S$ for any Z and any $S \in \mathcal{C}(X, Z)$.

When k is a commutative ring

When k is a commutative ring, let $k \mathcal{C}$ be the following category:

When k is a commutative ring, let $k \mathcal{C}$ be the following category:

- the objects of $k \mathcal{C}$ are the finite sets

When k is a commutative ring, let $k \mathcal{C}$ be the following category:

- the objects of $k \mathcal{C}$ are the finite sets,
- $\operatorname{Hom}_{k c}(X, Y)=k \mathcal{C}(Y, X)$

When k is a commutative ring, let $k \mathcal{C}$ be the following category:

- the objects of $k \mathcal{C}$ are the finite sets,
- $\operatorname{Hom}_{k \mathcal{C}}(X, Y)=k \mathcal{C}(Y, X)($ free k-module with basis $\mathcal{C}(Y, X))$

When k is a commutative ring, let $k \mathcal{C}$ be the following category:

- the objects of $k \mathcal{C}$ are the finite sets,
- $\operatorname{Hom}_{k \mathcal{C}}(X, Y)=k \mathcal{C}(Y, X)$,
- composition of morphisms extends composition of correspondences

When k is a commutative ring, let $k \mathcal{C}$ be the following category:

- the objects of $k \mathcal{C}$ are the finite sets,
- $\operatorname{Hom}_{k \mathcal{C}}(X, Y)=k \mathcal{C}(Y, X)$,
- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_{X} \in k \mathcal{C}(X, X)$.

Correspondence functors

When k is a commutative ring, let $k \mathcal{C}$ be the following category:

- the objects of $k \mathcal{C}$ are the finite sets,
- $\operatorname{Hom}_{k \mathcal{C}}(X, Y)=k \mathcal{C}(Y, X)$,
- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_{X} \in k \mathcal{C}(X, X)$.

A correspondence functor (over k) is a representation of $k \mathcal{C}$ over k

Correspondence functors

When k is a commutative ring, let $k \mathcal{C}$ be the following category:

- the objects of $k \mathcal{C}$ are the finite sets,
- $\operatorname{Hom}_{k \mathcal{C}}(X, Y)=k \mathcal{C}(Y, X)$,
- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_{X} \in k \mathcal{C}(X, X)$.

A correspondence functor (over k) is a representation of $k \mathcal{C}$ over k, i.e. a k-linear functor from $k \mathcal{C}$ to k-Mod.

Correspondence functors

When k is a commutative ring, let $k \mathcal{C}$ be the following category:

- the objects of $k \mathcal{C}$ are the finite sets,
- $\operatorname{Hom}_{k \mathcal{C}}(X, Y)=k \mathcal{C}(Y, X)$,
- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_{X} \in k \mathcal{C}(X, X)$.

A correspondence functor (over k) is a representation of $k \mathcal{C}$ over k, i.e. a k-linear functor from $k \mathcal{C}$ to k-Mod. Let \mathcal{F}_{k} denote the category of correspondence functors over k.

Correspondence functors

When k is a commutative ring, let $k \mathcal{C}$ be the following category:

- the objects of $k \mathcal{C}$ are the finite sets,
- $\operatorname{Hom}_{k \mathcal{C}}(X, Y)=k \mathcal{C}(Y, X)$,
- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_{X} \in k \mathcal{C}(X, X)$.

A correspondence functor (over k) is a representation of $k \mathcal{C}$ over k, i.e. a k-linear functor from $k \mathcal{C}$ to k-Mod. Let \mathcal{F}_{k} denote the category of correspondence functors over k. It is an abelian category.

Representations of categories

Representations of categories

Let \mathcal{D} be an essentially small k-linear category

Representations of categories

Let \mathcal{D} be a k-linear category

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}.

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}.

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $E n d_{\mathcal{D}}(X)$-module

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $E n d_{\mathcal{D}}(X)$-module $\forall \varphi \in \operatorname{End}_{\mathcal{D}}(X), \forall m \in F(x), \varphi m:=F(\varphi)(m)$.

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $\operatorname{End}_{\mathcal{D}}(X)$-module.

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $\operatorname{End}_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X)$

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $\operatorname{End}_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow E n d_{\mathcal{D}}(X)$-Mod

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $\operatorname{End}_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow \operatorname{End}_{\mathcal{D}}(X)$-Mod has a left adjoint $V \mapsto L_{X, V}$

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $E n d_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow \operatorname{End}_{\mathcal{D}}(X)$-Mod has a left adjoint $V \mapsto L_{X, V}$ such that for $Y \in \mathcal{D}$

$$
L_{X, V}(Y)=\mathcal{D}(Y, X) \otimes_{E n d_{\mathcal{D}}(X)} V
$$

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $\operatorname{End}_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow \operatorname{End}_{\mathcal{D}}(X)$-Mod has a left adjoint $V \mapsto L_{X, V}$ such that for $Y \in \mathcal{D}$

$$
L_{X, V}(Y)=\mathcal{D}(Y, X) \otimes_{E_{n d_{\mathcal{D}}}(X)} V
$$

and for $\psi \in \mathcal{D}(Z, Y)$

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $\operatorname{End}_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow \operatorname{End}_{\mathcal{D}}(X)$-Mod has a left adjoint $V \mapsto L_{X, V}$ such that for $Y \in \mathcal{D}$

$$
L_{X, V}(Y)=\mathcal{D}(Y, X) \otimes_{E n d_{\mathcal{D}}(X)} V
$$

and for $\psi \in \mathcal{D}(Z, Y), \varphi \in \mathcal{D}(Y, X)$

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $\operatorname{End}_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow \operatorname{End}_{\mathcal{D}}(X)$-Mod has a left adjoint $V \mapsto L_{X, V}$ such that for $Y \in \mathcal{D}$

$$
L_{X, V}(Y)=\mathcal{D}(Y, X) \otimes_{E^{2 d d_{\mathcal{D}}}(X)} V
$$

and for $\psi \in \mathcal{D}(Z, Y), \varphi \in \mathcal{D}(Y, X), v \in V$

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $\operatorname{End}_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow \operatorname{End}_{\mathcal{D}}(X)$-Mod has a left adjoint $V \mapsto L_{X, V}$ such that for $Y \in \mathcal{D}$

$$
L_{X, V}(Y)=\mathcal{D}(Y, X) \otimes_{E n d_{\mathcal{D}}(X)} V
$$

and for $\psi \in \mathcal{D}(Z, Y), \varphi \in \mathcal{D}(Y, X), v \in V$,

$$
L_{X, V}(\psi)(\varphi \otimes v)=(\psi \circ \varphi) \otimes v
$$

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $\operatorname{End}_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow E n d_{\mathcal{D}}(X)$-Mod has a left adjoint $V \mapsto L_{X, V}$ such that for $Y \in \mathcal{D}$

$$
L_{X, V}(Y)=\mathcal{D}(Y, X) \otimes_{E n d_{\mathcal{D}}(X)} V
$$

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $\operatorname{End}_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow E n d_{\mathcal{D}}(X)$-Mod has a left adjoint $V \mapsto L_{X, V}$ such that for $Y \in \mathcal{D}$

$$
L_{X, V}(Y)=\mathcal{D}(Y, X) \otimes_{E^{2} d_{\mathcal{D}}(X)} V
$$

- When V is simple

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $\operatorname{End}_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow \operatorname{End}_{\mathcal{D}}(X)$-Mod has a left adjoint $V \mapsto L_{X, V}$ such that for $Y \in \mathcal{D}$

$$
L_{X, V}(Y)=\mathcal{D}(Y, X) \otimes_{E n d_{\mathcal{D}}(X)} V
$$

- When V is simple, the functor $L_{X, V}$ has a unique maximal (proper) subfunctor $J_{X, V}$

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $\operatorname{End}_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow \operatorname{End}_{\mathcal{D}}(X)$-Mod has a left adjoint $V \mapsto L_{X, V}$ such that for $Y \in \mathcal{D}$

$$
L_{X, V}(Y)=\mathcal{D}(Y, X) \otimes_{E n d_{\mathcal{D}}(X)} V
$$

- When V is simple, the functor $L_{X, V}$ has a unique maximal (proper) subfunctor $J_{X, V}$, defined by

$$
J_{X, V}(Y)=
$$

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $E n d_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow \operatorname{End}_{\mathcal{D}}(X)$-Mod has a left adjoint $V \mapsto L_{X, V}$ such that for $Y \in \mathcal{D}$

$$
L_{X, V}(Y)=\mathcal{D}(Y, X) \otimes_{E n d_{\mathcal{D}}(X)} V
$$

- When V is simple, the functor $L_{X, V}$ has a unique maximal (proper) subfunctor $J_{X, V}$, defined by

$$
J_{X, V}(Y)=\left\{\sum_{i} \varphi_{i} \otimes v_{i} \mid\right.
$$

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $\operatorname{End}_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow \operatorname{End}_{\mathcal{D}}(X)$-Mod has a left adjoint $V \mapsto L_{X, V}$ such that for $Y \in \mathcal{D}$

$$
L_{X, V}(Y)=\mathcal{D}(Y, X) \otimes_{E n d_{\mathcal{D}}(X)} V
$$

- When V is simple, the functor $L_{X, V}$ has a unique maximal (proper) subfunctor $J_{X, V}$, defined by

$$
J_{X, V}(Y)=\left\{\sum_{i} \varphi_{i} \otimes v_{i} \mid \forall \theta \in \mathcal{D}(X, Y)\right.
$$

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $\operatorname{End}_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow \operatorname{End}_{\mathcal{D}}(X)$-Mod has a left adjoint $V \mapsto L_{X, V}$ such that for $Y \in \mathcal{D}$

$$
L_{X, V}(Y)=\mathcal{D}(Y, X) \otimes_{E n d_{\mathcal{D}}(X)} V
$$

- When V is simple, the functor $L_{X, V}$ has a unique maximal (proper) subfunctor $J_{X, V}$, defined by

$$
J_{X, V}(Y)=\left\{\sum_{i} \varphi_{i} \otimes v_{i} \mid \forall \theta \in \mathcal{D}(X, Y), \quad \sum_{i}\left(\theta \varphi_{i}\right) v_{i}=0\right\}
$$

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $E n d_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow \operatorname{End}_{\mathcal{D}}(X)$-Mod has a left adjoint $V \mapsto L_{X, V}$ such that for $Y \in \mathcal{D}$

$$
L_{X, V}(Y)=\mathcal{D}(Y, X) \otimes_{E n d_{\mathcal{D}}(X)} V,
$$

- When V is simple, the functor $L_{X, V}$ has a unique maximal (proper) subfunctor $J_{X, V}$,

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $E n d_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow \operatorname{End}_{\mathcal{D}}(X)$-Mod has a left adjoint $V \mapsto L_{X, V}$ such that for $Y \in \mathcal{D}$

$$
L_{X, V}(Y)=\mathcal{D}(Y, X) \otimes_{E n d_{\mathcal{D}}(X)} V,
$$

- When V is simple, the functor $L_{X, V}$ has a unique maximal (proper) subfunctor $J_{X, V}$, and the quotient $S_{X, V}=L_{X, V} / J_{X, V}$ is a simple object of \mathcal{F}_{k}.

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $E n d_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow \operatorname{End}_{\mathcal{D}}(X)$-Mod has a left adjoint $V \mapsto L_{X, V}$ such that for $Y \in \mathcal{D}$

$$
L_{X, V}(Y)=\mathcal{D}(Y, X) \otimes_{E n d_{\mathcal{D}}(X)} V,
$$

- When V is simple, the functor $L_{X, V}$ has a unique maximal (proper) subfunctor $J_{X, V}$, and the quotient $S_{X, V}=L_{X, V} / J_{X, V}$ is a simple object of \mathcal{F}_{k}. Moreover $S_{X, V}(X) \cong V$.

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $\operatorname{End}_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow \operatorname{End}_{\mathcal{D}}(X)$-Mod has a left adjoint $V \mapsto L_{X, V}$ such that for $Y \in \mathcal{D}$

$$
L_{X, V}(Y)=\mathcal{D}(Y, X) \otimes_{E n d_{\mathcal{D}}(X)} V,
$$

- When V is simple, the functor $L_{X, V}$ has a unique maximal (proper) subfunctor $J_{X, V}$, and the quotient $S_{X, V}=L_{X, V} / J_{X, V}$ is a simple object of \mathcal{F}_{k}. Moreover $S_{X, V}(X) \cong V$.
- Conversely, if S is a simple representation of \mathcal{D} over k

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $\operatorname{End}_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow \operatorname{End}_{\mathcal{D}}(X)$-Mod has a left adjoint $V \mapsto L_{X, V}$ such that for $Y \in \mathcal{D}$

$$
L_{X, V}(Y)=\mathcal{D}(Y, X) \otimes_{E n d_{\mathcal{D}}(X)} V
$$

- When V is simple, the functor $L_{X, V}$ has a unique maximal (proper) subfunctor $J_{X, V}$, and the quotient $S_{X, V}=L_{X, V} / J_{X, V}$ is a simple object of \mathcal{F}_{k}. Moreover $S_{X, V}(X) \cong V$.
- Conversely, if S is a simple representation of \mathcal{D} over k, and if $S(X) \neq 0$

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $E n d_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $\operatorname{End}_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow \operatorname{End}_{\mathcal{D}}(X)$-Mod has a left adjoint $V \mapsto L_{X, V}$ such that for $Y \in \mathcal{D}$

$$
L_{X, V}(Y)=\mathcal{D}(Y, X) \otimes_{E_{n d_{\mathcal{D}}(X)}} V
$$

- When V is simple, the functor $L_{X, V}$ has a unique maximal (proper) subfunctor $J_{X, V}$, and the quotient $S_{X, V}=L_{X, V} / J_{X, V}$ is a simple object of \mathcal{F}_{k}. Moreover $S_{X, V}(X) \cong V$.
- Conversely, if S is a simple representation of \mathcal{D} over k, and if $S(X) \neq 0$, then $V=S(X)$ is a simple $\operatorname{End}_{\mathcal{D}}(X)$-module

Representations of categories

Let \mathcal{D} be a k-linear category, and \mathcal{F}_{k} the category of k-linear representations of \mathcal{D}. Let moreover X be an object of \mathcal{D}. Then:

- $\operatorname{End}_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_{k}$, the evaluation $F(X)$ is an $\operatorname{End}_{\mathcal{D}}(X)$-module.
- The evaluation functor $F \mapsto F(X): \mathcal{F}_{k} \rightarrow \operatorname{End}_{\mathcal{D}}(X)$-Mod has a left adjoint $V \mapsto L_{X, V}$ such that for $Y \in \mathcal{D}$

$$
L_{X, V}(Y)=\mathcal{D}(Y, X) \otimes_{E_{n d_{\mathcal{D}}(X)}} V
$$

- When V is simple, the functor $L_{X, V}$ has a unique maximal (proper) subfunctor $J_{X, V}$, and the quotient $S_{X, V}=L_{X, V} / J_{X, V}$ is a simple object of \mathcal{F}_{k}. Moreover $S_{X, V}(X) \cong V$.
- Conversely, if S is a simple representation of \mathcal{D} over k, and if $S(X) \neq 0$, then $V=S(X)$ is a simple $E n d_{\mathcal{D}}(X)$-module, and $S \cong S_{X, V}$.

Relations

Relations

For a finite set, the algebra $E n d_{k \mathcal{C}}(X)=k \mathcal{C}(X, X)$

Relations

For a finite set, the algebra $\operatorname{End}_{k \mathcal{C}}(X)=k \mathcal{C}(X, X)$ is called the algebra of relations on X.

Relations

For a finite set, the algebra $\operatorname{End}_{k \mathcal{C}}(X)=k \mathcal{C}(X, X)$ is called the algebra of relations on X.

- A relation $R \in \mathcal{C}(X, X)$ is called inessential

Relations

For a finite set, the algebra $\operatorname{End}_{k \mathcal{C}}(X)=k \mathcal{C}(X, X)$ is called the algebra of relations on X.

- A relation $R \in \mathcal{C}(X, X)$ is called inessential if there exists Y with $|Y|<|X|$

Relations

For a finite set, the algebra $\operatorname{End}_{k \mathcal{C}}(X)=k \mathcal{C}(X, X)$ is called the algebra of relations on X.

- A relation $R \in \mathcal{C}(X, X)$ is called inessential if there exists Y with $|Y|<|X|$, and correspondences $S \in \mathcal{C}(X, Y)$ and $T \in \mathcal{C}(Y, X)$

Relations

For a finite set, the algebra $\operatorname{End}_{k \mathcal{C}}(X)=k \mathcal{C}(X, X)$ is called the algebra of relations on X.

- A relation $R \in \mathcal{C}(X, X)$ is called inessential if there exists Y with $|Y|<|X|$, and correspondences $S \in \mathcal{C}(X, Y)$ and $T \in \mathcal{C}(Y, X)$ such that $R=S \circ T$

Relations

For a finite set, the algebra $\operatorname{End}_{k \mathcal{C}}(X)=k \mathcal{C}(X, X)$ is called the algebra of relations on X.

- A relation $R \in \mathcal{C}(X, X)$ is called inessential if there exists Y with $|Y|<|X|$, and correspondences $S \in \mathcal{C}(X, Y)$ and $T \in \mathcal{C}(Y, X)$ such that $R=S \circ T$, i.e. $X \underset{T}{R} X$

Essential relations

For a finite set, the algebra $\operatorname{End}_{k \mathcal{C}}(X)=k \mathcal{C}(X, X)$ is called the algebra of relations on X.

- A relation $R \in \mathcal{C}(X, X)$ is called inessential if there exists Y with $|Y|<|X|$, and correspondences $S \in \mathcal{C}(X, Y)$ and $T \in \mathcal{C}(Y, X)$ such that $R=S \circ T$, i.e. $X \xrightarrow[T]{R} X$
- A relation $R \in \mathcal{C}(X, X)$ is called essential

Essential relations

For a finite set, the algebra $\operatorname{End}_{k \mathcal{C}}(X)=k \mathcal{C}(X, X)$ is called the algebra of relations on X.

- A relation $R \in \mathcal{C}(X, X)$ is called inessential if there exists Y with $|Y|<|X|$, and correspondences $S \in \mathcal{C}(X, Y)$ and $T \in \mathcal{C}(Y, X)$ such that $R=S \circ T$, i.e. $X \xrightarrow[T]{R} X$
- A relation $R \in \mathcal{C}(X, X)$ is called essential if it is not inessential.

Essential relations

For a finite set, the algebra $\operatorname{End}_{k \mathcal{C}}(X)=k \mathcal{C}(X, X)$ is called the algebra of relations on X.

- A relation $R \in \mathcal{C}(X, X)$ is called inessential if there exists Y with $|Y|<|X|$, and correspondences $S \in \mathcal{C}(X, Y)$ and $T \in \mathcal{C}(Y, X)$ such that $R=S \circ T$, i.e. $X \xrightarrow[T]{R} X$
- A relation $R \in \mathcal{C}(X, X)$ is called essential if it is not inessential.
- Example: Suppose $|X| \geq 2$, and $R=U \times V$, for $U, V \subseteq X$.

Essential relations

For a finite set, the algebra $\operatorname{End}_{k \mathcal{C}}(X)=k \mathcal{C}(X, X)$ is called the algebra of relations on X.

- A relation $R \in \mathcal{C}(X, X)$ is called inessential if there exists Y with $|Y|<|X|$, and correspondences $S \in \mathcal{C}(X, Y)$ and $T \in \mathcal{C}(Y, X)$ such that $R=S \circ T$, i.e. $X \xrightarrow[T]{R} X$
- A relation $R \in \mathcal{C}(X, X)$ is called essential if it is not inessential.
- Example: Suppose $|X| \geq 2$, and $R=U \times V$, for $U, V \subseteq X$. Then $Y=\{y\}, S=U \times\{y\}$, and $T=\{y\} \times V$.

Essential relations

For a finite set, the algebra $\operatorname{End}_{k \mathcal{C}}(X)=k \mathcal{C}(X, X)$ is called the algebra of relations on X.

- A relation $R \in \mathcal{C}(X, X)$ is called inessential if there exists Y with $|Y|<|X|$, and correspondences $S \in \mathcal{C}(X, Y)$ and $T \in \mathcal{C}(Y, X)$ such that $R=S \circ T$, i.e. $X \xrightarrow[T]{R} X$
- A relation $R \in \mathcal{C}(X, X)$ is called essential if it is not inessential.
- Example: Suppose $|X| \geq 2$, and $R=U \times V$, for $U, V \subseteq X$. Then $Y=\{y\}, S=U \times\{y\}$, and $T=\{y\} \times V$. Then $R=S \circ T$ is inessential.

Essential relations

For a finite set, the algebra $\operatorname{End}_{k \mathcal{C}}(X)=k \mathcal{C}(X, X)$ is called the algebra of relations on X.

- A relation $R \in \mathcal{C}(X, X)$ is called inessential if there exists Y with $|Y|<|X|$, and correspondences $S \in \mathcal{C}(X, Y)$ and $T \in \mathcal{C}(Y, X)$ such that $R=S \circ T$, i.e. $X \xrightarrow[T]{R} X$
- A relation $R \in \mathcal{C}(X, X)$ is called essential if it is not inessential.
- Example: Suppose $|X| \geq 2$, and $R=U \times V$, for $U, V \subseteq X$. Then $Y=\{y\}, S=U \times\{y\}$, and $T=\{y\} \times V$. Then $R=S \circ T$ is inessential.
- Let $\mathcal{I}_{X} \subseteq \mathcal{R}_{X}=k \mathcal{C}(X, X)$ denote the set of linear combinations of inessential relations on X.

Essential relations

For a finite set, the algebra $\operatorname{End}_{k \mathcal{C}}(X)=k \mathcal{C}(X, X)$ is called the algebra of relations on X.

- A relation $R \in \mathcal{C}(X, X)$ is called inessential if there exists Y with $|Y|<|X|$, and correspondences $S \in \mathcal{C}(X, Y)$ and $T \in \mathcal{C}(Y, X)$ such that $R=S \circ T$, i.e. $X \xrightarrow[T]{R} X$
- A relation $R \in \mathcal{C}(X, X)$ is called essential if it is not inessential.
- Example: Suppose $|X| \geq 2$, and $R=U \times V$, for $U, V \subseteq X$. Then $Y=\{y\}, S=U \times\{y\}$, and $T=\{y\} \times V$. Then $R=S \circ T$ is inessential.
- Let $\mathcal{I}_{X} \subseteq \mathcal{R}_{X}=k \mathcal{C}(X, X)$ denote the set of linear combinations of inessential relations on X. Then \mathcal{I}_{X} is a two sided ideal of \mathcal{R}_{X}

Essential relations

For a finite set, the algebra $\operatorname{End}_{k \mathcal{C}}(X)=k \mathcal{C}(X, X)$ is called the algebra of relations on X.

- A relation $R \in \mathcal{C}(X, X)$ is called inessential if there exists Y with $|Y|<|X|$, and correspondences $S \in \mathcal{C}(X, Y)$ and $T \in \mathcal{C}(Y, X)$ such that $R=S \circ T$, i.e. $X \xrightarrow[T]{R} X$
- A relation $R \in \mathcal{C}(X, X)$ is called essential if it is not inessential.
- Example: Suppose $|X| \geq 2$, and $R=U \times V$, for $U, V \subseteq X$. Then $Y=\{y\}, S=U \times\{y\}$, and $T=\{y\} \times V$. Then $R=S \circ T$ is inessential.
- Let $\mathcal{I}_{X} \subseteq \mathcal{R}_{X}=k \mathcal{C}(X, X)$ denote the set of linear combinations of inessential relations on X. Then \mathcal{I}_{X} is a two sided ideal of \mathcal{R}_{X}, and the quotient $\mathcal{E}_{X}=\mathcal{R}_{X} / \mathcal{I}_{X}$ is called the algebra of essential relations on X.
- From now on, the set X is fixed (and understood).
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}$
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X.
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- Example: Let $X=\{1,2\}$.
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- Example: Let $X=\{1,2\}$. If $R=\underset{2}{1} \gg=1$
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- Example: Let $X=\{1,2\}$.

- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- Example: Let $X=\{1,2\}$.

- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- Classical definitions:
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{o p}=\{(x, y) \mid(y, x) \in R\}$.
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{o p}=\{(x, y) \mid(y, x) \in R\}$.
- R is reflexive
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{o p}=\{(x, y) \mid(y, x) \in R\}$.
- R is reflexive $\Longleftrightarrow \Delta \subseteq R$.
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{o p}=\{(x, y) \mid(y, x) \in R\}$.
- R is reflexive $\Longleftrightarrow \Delta \subseteq R$.
- R is transitive
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{o p}=\{(x, y) \mid(y, x) \in R\}$.
- R is reflexive $\Longleftrightarrow \Delta \subseteq R$.
- R is transitive $\Longleftrightarrow R^{2} \subseteq R$.
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{o p}=\{(x, y) \mid(y, x) \in R\}$.
- R is reflexive $\Longleftrightarrow \Delta \subseteq R$.
- R is transitive $\Longleftrightarrow R^{2} \subseteq R$.
- R is a preorder
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{o p}=\{(x, y) \mid(y, x) \in R\}$.
- R is reflexive $\Longleftrightarrow \Delta \subseteq R$.
- R is transitive $\Longleftrightarrow R^{2} \subseteq R$.
- R is a preorder $\Longleftrightarrow \Delta \subseteq R=R^{2}$.
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{o p}=\{(x, y) \mid(y, x) \in R\}$.
- R is reflexive $\Longleftrightarrow \Delta \subseteq R$.
- R is transitive $\Longleftrightarrow R^{2} \subseteq R$.
- R is a preorder $\Longleftrightarrow \Delta \subseteq R=R^{2}$.
- R is symmetric
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{o p}=\{(x, y) \mid(y, x) \in R\}$.
- R is reflexive $\Longleftrightarrow \Delta \subseteq R$.
- R is transitive $\Longleftrightarrow R^{2} \subseteq R$.
- R is a preorder $\Longleftrightarrow \Delta \subseteq R=R^{2}$.
- R is symmetric $\Longleftrightarrow R=R^{\mathrm{op}}$.
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{o p}=\{(x, y) \mid(y, x) \in R\}$.
- R is reflexive $\Longleftrightarrow \Delta \subseteq R$.
- R is transitive $\Longleftrightarrow R^{2} \subseteq R$.
- R is a preorder $\Longleftrightarrow \Delta \subseteq R=R^{2}$.
- R is symmetric $\Longleftrightarrow R=R^{\mathrm{op}}$.
- R is an equivalence relation
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{o p}=\{(x, y) \mid(y, x) \in R\}$.
- R is reflexive $\Longleftrightarrow \Delta \subseteq R$.
- R is transitive $\Longleftrightarrow R^{2} \subseteq R$.
- R is a preorder $\Longleftrightarrow \Delta \subseteq R=R^{2}$.
- R is symmetric $\Longleftrightarrow R=R^{\mathrm{op}}$.
- R is an equivalence relation $\Longleftrightarrow \Delta \subseteq R=R^{o p}=R^{2}$.
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{o p}=\{(x, y) \mid(y, x) \in R\}$.
- R is reflexive $\Longleftrightarrow \Delta \subseteq R$.
- R is transitive $\Longleftrightarrow R^{2} \subseteq R$.
- R is a preorder $\Longleftrightarrow \Delta \subseteq R=R^{2}$.
- R is symmetric $\Longleftrightarrow R=R^{\mathrm{op}}$.
- R is an equivalence relation $\Longleftrightarrow \Delta \subseteq R=R^{o p}=R^{2}$.
- R is antisymmetric
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{o p}=\{(x, y) \mid(y, x) \in R\}$.
- R is reflexive $\Longleftrightarrow \Delta \subseteq R$.
- R is transitive $\Longleftrightarrow R^{2} \subseteq R$.
- R is a preorder $\Longleftrightarrow \Delta \subseteq R=R^{2}$.
- R is symmetric $\Longleftrightarrow R=R^{\mathrm{op}}$.
- R is an equivalence relation $\Longleftrightarrow \Delta \subseteq R=R^{o p}=R^{2}$.
- R is antisymmetric $\Longleftrightarrow R \cap R^{\mathrm{op}} \subseteq \Delta$.
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{o p}=\{(x, y) \mid(y, x) \in R\}$.
- R is reflexive $\Longleftrightarrow \Delta \subseteq R$.
- R is transitive $\Longleftrightarrow R^{2} \subseteq R$.
- R is a preorder $\Longleftrightarrow \Delta \subseteq R=R^{2}$.
- R is symmetric $\Longleftrightarrow R=R^{\mathrm{op}}$.
- R is an equivalence relation $\Longleftrightarrow \Delta \subseteq R=R^{o p}=R^{2}$.
- R is antisymmetric $\Longleftrightarrow R \cap R^{\text {op }} \subseteq \Delta$.
- R is an order
- From now on, the set X is fixed (and understood). Set $n=|X|$, $\mathcal{E}=\mathcal{E}_{X}, \Delta=\Delta_{X}, \ldots$
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X. In \mathcal{E}, the product of two essential relations R and S is equal to $R \circ S$ if $R \circ S$ is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{o p}=\{(x, y) \mid(y, x) \in R\}$.
- R is reflexive $\Longleftrightarrow \Delta \subseteq R$.
- R is transitive $\Longleftrightarrow R^{2} \subseteq R$.
- R is a preorder $\Longleftrightarrow \Delta \subseteq R=R^{2}$.
- R is symmetric $\Longleftrightarrow R=R^{\text {op }}$.
- R is an equivalence relation $\Longleftrightarrow \Delta \subseteq R=R^{o p}=R^{2}$.
- R is antisymmetric $\Longleftrightarrow R \cap R^{\text {op }} \subseteq \Delta$.
- R is an order $\Longleftrightarrow R=R^{2}$ and $R \cap R^{\text {op }}=\Delta$.

Characterization

Characterization

Recall that X is a finite set of cardinality n.

Characterization

Recall that X is a finite set of cardinality n.
Lemma
A relation R on X is inessential

Characterization

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\Longleftrightarrow \exists U_{i}, V_{i} \subseteq X, 1 \leq i \leq n-1$

Characterization

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\Longleftrightarrow \exists U_{i}, V_{i} \subseteq X, 1 \leq i \leq n-1$ such that $R=\bigcup_{i=1}^{n-1}\left(U_{i} \times V_{i}\right)$.

Characterization

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\Longleftrightarrow \exists U_{i}, V_{i} \subseteq X, 1 \leq i \leq n-1$ such that $R=\bigcup_{i=1}^{n-1}\left(U_{i} \times V_{i}\right)$.

- If R is a preorder, and not an order

Characterization

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\Longleftrightarrow \exists U_{i}, V_{i} \subseteq X, 1 \leq i \leq n-1$ such that $R=\bigcup_{i=1}^{n-1}\left(U_{i} \times V_{i}\right)$.

- If R is a preorder, and not an order, then R is inessential.

Characterization

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\Longleftrightarrow \exists U_{i}, V_{i} \subseteq X, 1 \leq i \leq n-1$ such that $R=\bigcup_{i=1}^{n-1}\left(U_{i} \times V_{i}\right)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order

Characterization

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\Longleftrightarrow \exists U_{i}, V_{i} \subseteq X, 1 \leq i \leq n-1$ such that $R=\bigcup_{i=1}^{n-1}\left(U_{i} \times V_{i}\right)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$

Characterization

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\Longleftrightarrow \exists U_{i}, V_{i} \subseteq X, 1 \leq i \leq n-1$ such that $R=\bigcup_{i=1}^{n-1}\left(U_{i} \times V_{i}\right)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.

Permutations

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\Longleftrightarrow \exists U_{i}, V_{i} \subseteq X, 1 \leq i \leq n-1$ such that $R=\bigcup_{i=1}^{n-1}\left(U_{i} \times V_{i}\right)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X.

Permutations

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\Longleftrightarrow \exists U_{i}, V_{i} \subseteq X, 1 \leq i \leq n-1$ such that $R=\bigcup_{i=1}^{n-1}\left(U_{i} \times V_{i}\right)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X. Then $\sigma \in \Sigma \mapsto$

Permutations

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\Longleftrightarrow \exists U_{i}, V_{i} \subseteq X, 1 \leq i \leq n-1$ such that $R=\bigcup_{i=1}^{n-1}\left(U_{i} \times V_{i}\right)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X. Then

$$
\sigma \in \Sigma \mapsto \Delta_{\sigma}=\{(\sigma(x), x) \mid x \in X\} \in \mathcal{C}(X, X)
$$

Permutations

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\Longleftrightarrow \exists U_{i}, V_{i} \subseteq X, 1 \leq i \leq n-1$ such that $R=\bigcup_{i=1}^{n-1}\left(U_{i} \times V_{i}\right)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_{\sigma}=\{(\sigma(x), x) \mid x \in X\} \in \mathcal{C}(X, X)$ is a monoid homomorphism.

Permutations

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\Longleftrightarrow \exists U_{i}, V_{i} \subseteq X, 1 \leq i \leq n-1$ such that $R=\bigcup_{i=1}^{n-1}\left(U_{i} \times V_{i}\right)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_{\sigma}=\{(\sigma(x), x) \mid x \in X\} \in \mathcal{C}(X, X)$ is a monoid homomorphism. Moreover Δ_{σ} is essential.

Permutations

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\Longleftrightarrow \exists U_{i}, V_{i} \subseteq X, 1 \leq i \leq n-1$ such that $R=\bigcup_{i=1}^{n-1}\left(U_{i} \times V_{i}\right)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_{\sigma}=\{(\sigma(x), x) \mid x \in X\} \in \mathcal{C}(X, X)$ is a monoid homomorphism. Moreover Δ_{σ} is essential.

Theorem

Let R be an essential relation on X.

Permutations

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\Longleftrightarrow \exists U_{i}, V_{i} \subseteq X, 1 \leq i \leq n-1$ such that $R=\bigcup_{i=1}^{n-1}\left(U_{i} \times V_{i}\right)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_{\sigma}=\{(\sigma(x), x) \mid x \in X\} \in \mathcal{C}(X, X)$ is a monoid homomorphism. Moreover Δ_{σ} is essential.

Theorem

Let R be an essential relation on X. Then there exists $\sigma \in \Sigma$ such that $R \supseteq \Delta_{\sigma}$

Permutations

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\Longleftrightarrow \exists U_{i}, V_{i} \subseteq X, 1 \leq i \leq n-1$ such that $R=\bigcup_{i=1}^{n-1}\left(U_{i} \times V_{i}\right)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_{\sigma}=\{(\sigma(x), x) \mid x \in X\} \in \mathcal{C}(X, X)$ is a monoid homomorphism. Moreover Δ_{σ} is essential.

Theorem

Let R be an essential relation on X. Then there exists $\sigma \in \Sigma$ such that $R \supseteq \Delta_{\sigma}$, i.e. $R=S \Delta_{\sigma}$, where S is reflexive.

Permutations

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\Longleftrightarrow \exists U_{i}, V_{i} \subseteq X, 1 \leq i \leq n-1$ such that $R=\bigcup_{i=1}^{n-1}\left(U_{i} \times V_{i}\right)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_{\sigma}=\{(\sigma(x), x) \mid x \in X\} \in \mathcal{C}(X, X)$ is a monoid homomorphism. Moreover Δ_{σ} is essential.

Theorem

Let R be an essential relation on X. Then there exists $\sigma \in \Sigma$ such that $R \supseteq \Delta_{\sigma}$, i.e. $R=S \Delta_{\sigma}$, where S is reflexive.

Proof:

Permutations

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\Longleftrightarrow \exists U_{i}, V_{i} \subseteq X, 1 \leq i \leq n-1$ such that $R=\bigcup_{i=1}^{n-1}\left(U_{i} \times V_{i}\right)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_{\sigma}=\{(\sigma(x), x) \mid x \in X\} \in \mathcal{C}(X, X)$ is a monoid homomorphism. Moreover Δ_{σ} is essential.

Theorem

Let R be an essential relation on X. Then there exists $\sigma \in \Sigma$ such that $R \supseteq \Delta_{\sigma}$, i.e. $R=S \Delta_{\sigma}$, where S is reflexive.

Proof: One direct proof

Permutations

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\Longleftrightarrow \exists U_{i}, V_{i} \subseteq X, 1 \leq i \leq n-1$ such that $R=\bigcup_{i=1}^{n-1}\left(U_{i} \times V_{i}\right)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_{\sigma}=\{(\sigma(x), x) \mid x \in X\} \in \mathcal{C}(X, X)$ is a monoid homomorphism. Moreover Δ_{σ} is essential.

Theorem

Let R be an essential relation on X. Then there exists $\sigma \in \Sigma$ such that $R \supseteq \Delta_{\sigma}$, i.e. $R=S \Delta_{\sigma}$, where S is reflexive.

Proof: One direct proof, another one using a theorem of P . Hall (1935).

A nilpotent ideal

A nilpotent ideal

- If S is reflexive

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S$

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2}$

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}$

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$.

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}.

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
- either \bar{S} is not an order.

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
- either \bar{S} is not an order. Then $\bar{S}=0$ in \mathcal{E}.

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
- either \bar{S} is not an order. Then $\bar{S}=0$ in \mathcal{E}.
- or \bar{S} is an order.

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
- either \bar{S} is not an order. Then $\bar{S}=0$ in \mathcal{E}.
- or \bar{S} is an order. Then $\Delta \subseteq S \subseteq \bar{S} \Longrightarrow S$ is essential.

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
- either \bar{S} is not an order. Then $\bar{S}=0$ in \mathcal{E}.
- or \bar{S} is an order. Then $\Delta \subseteq S \subseteq \bar{S} \Longrightarrow S$ is essential.

Proposition

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
- either \bar{S} is not an order. Then $\bar{S}=0$ in \mathcal{E}.
- or \bar{S} is an order. Then $\Delta \subseteq S \subseteq \bar{S} \Longrightarrow S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S-\bar{S}) \Delta_{\sigma}$

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
- either \bar{S} is not an order. Then $\bar{S}=0$ in \mathcal{E}.
- or \bar{S} is an order. Then $\Delta \subseteq S \subseteq \bar{S} \Longrightarrow S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S-\bar{S}) \Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
- either \bar{S} is not an order. Then $\bar{S}=0$ in \mathcal{E}.
- or \bar{S} is an order. Then $\Delta \subseteq S \subseteq \bar{S} \Longrightarrow S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S-\bar{S}) \Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.
Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
- either \bar{S} is not an order. Then $\bar{S}=0$ in \mathcal{E}.
- or \bar{S} is an order. Then $\Delta \subseteq S \subseteq \bar{S} \Longrightarrow S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S-\bar{S}) \Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.
Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.
Proof (sketch): Let $S \supseteq \Delta$

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
- either \bar{S} is not an order. Then $\bar{S}=0$ in \mathcal{E}.
- or \bar{S} is an order. Then $\Delta \subseteq S \subseteq \bar{S} \Longrightarrow S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S-\bar{S}) \Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.
Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.
Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}-\{0\}$ such that $S^{m}=\bar{S}$.

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
- either \bar{S} is not an order. Then $\bar{S}=0$ in \mathcal{E}.
- or \bar{S} is an order. Then $\Delta \subseteq S \subseteq \bar{S} \Longrightarrow S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S-\bar{S}) \Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.
Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.
Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}-\{0\}$ such that $S^{m}=\bar{S}$.

- Let $Q \supseteq \Delta$.

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
- either \bar{S} is not an order. Then $\bar{S}=0$ in \mathcal{E}.
- or \bar{S} is an order. Then $\Delta \subseteq S \subseteq \bar{S} \Longrightarrow S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S-\bar{S}) \Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.
Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.
Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}-\{0\}$ such that $S^{m}=\bar{S}$.

- Let $Q \supseteq \Delta$. Then $Q(S-\bar{S})=Q S-Q \bar{S}=$

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
- either \bar{S} is not an order. Then $\bar{S}=0$ in \mathcal{E}.
- or \bar{S} is an order. Then $\Delta \subseteq S \subseteq \bar{S} \Longrightarrow S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S-\bar{S}) \Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.
Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.
Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}-\{0\}$ such that $S^{m}=\bar{S}$.

- Let $Q \supseteq \Delta$. Then $Q(S-\bar{S})=Q S-Q \bar{S}=(Q S-\overline{Q S})-(Q \bar{S}-\overline{Q \bar{S}})$ since $\overline{Q S}=\overline{Q \bar{S}}$.

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
- either \bar{S} is not an order. Then $\bar{S}=0$ in \mathcal{E}.
- or \bar{S} is an order. Then $\Delta \subseteq S \subseteq \bar{S} \Longrightarrow S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S-\bar{S}) \Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.
Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.
Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}-\{0\}$ such that $S^{m}=\bar{S}$.

- Let $Q \supseteq \Delta$. Then $Q(S-\bar{S})=Q S-Q \bar{S}=(Q S-\overline{Q S})-(Q \bar{S}-\overline{Q \bar{S}})$ since $\overline{Q S}=\overline{Q \bar{S}}$. Hence $Q \mathcal{N} \subseteq \mathcal{N}$.

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
- either \bar{S} is not an order. Then $\bar{S}=0$ in \mathcal{E}.
- or \bar{S} is an order. Then $\Delta \subseteq S \subseteq \bar{S} \Longrightarrow S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S-\bar{S}) \Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.
Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.
Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}-\{0\}$ such that $S^{m}=\bar{S}$.

- Let $Q \supseteq \Delta$. Then $Q(S-\bar{S})=Q S-Q \bar{S}=(Q S-\overline{Q S})-(Q \bar{S}-\overline{Q \bar{S}})$ since $\overline{Q S}=\overline{Q \bar{S}}$. Hence $Q \mathcal{N} \subseteq \mathcal{N}$.
- $(S-\bar{S})^{m}=$

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
- either \bar{S} is not an order. Then $\bar{S}=0$ in \mathcal{E}.
- or \bar{S} is an order. Then $\Delta \subseteq S \subseteq \bar{S} \Longrightarrow S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S-\bar{S}) \Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.
Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.
Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}-\{0\}$ such that $S^{m}=\bar{S}$.

- Let $Q \supseteq \Delta$. Then $Q(S-\bar{S})=Q S-Q \bar{S}=(Q S-\overline{Q S})-(Q \bar{S}-\overline{Q \bar{S}})$ since $\overline{Q S}=\overline{Q \bar{S}}$. Hence $Q \mathcal{N} \subseteq \mathcal{N}$.
- $(S-\bar{S})^{m}=\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} S^{m-i} \bar{S}^{i}=$

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
- either \bar{S} is not an order. Then $\bar{S}=0$ in \mathcal{E}.
- or \bar{S} is an order. Then $\Delta \subseteq S \subseteq \bar{S} \Longrightarrow S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S-\bar{S}) \Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.
Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.
Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}-\{0\}$ such that $S^{m}=\bar{S}$.

- Let $Q \supseteq \Delta$. Then $Q(S-\bar{S})=Q S-Q \bar{S}=(Q S-\overline{Q S})-(Q \bar{S}-\overline{Q \bar{S}})$ since $\overline{Q S}=\overline{Q \bar{S}}$. Hence $Q \mathcal{N} \subseteq \mathcal{N}$.
- $(S-\bar{S})^{m}=\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} S^{m-i} \bar{S}^{i}=\bar{S}+$

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
- either \bar{S} is not an order. Then $\bar{S}=0$ in \mathcal{E}.
- or \bar{S} is an order. Then $\Delta \subseteq S \subseteq \bar{S} \Longrightarrow S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S-\bar{S}) \Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.
Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.
Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}-\{0\}$ such that $S^{m}=\bar{S}$.

- Let $Q \supseteq \Delta$. Then $Q(S-\bar{S})=Q S-Q \bar{S}=(Q S-\overline{Q S})-(Q \bar{S}-\overline{Q \bar{S}})$ since $\overline{Q S}=\overline{Q \bar{S}}$. Hence $Q \mathcal{N} \subseteq \mathcal{N}$.
- $(S-\bar{S})^{m}=\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} S^{m-i} \bar{S}^{i}=\bar{S}+\sum_{i=1}^{m}(-1)^{i}\binom{m}{i} \underbrace{S^{m-i} \bar{S}}_{\bar{S}}$

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
- either \bar{S} is not an order. Then $\bar{S}=0$ in \mathcal{E}.
- or \bar{S} is an order. Then $\Delta \subseteq S \subseteq \bar{S} \Longrightarrow S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S-\bar{S}) \Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.
Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.
Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}-\{0\}$ such that $S^{m}=\bar{S}$.

- Let $Q \supseteq \Delta$. Then $Q(S-\bar{S})=Q S-Q \bar{S}=(Q S-\overline{Q S})-(Q \bar{S}-\overline{Q \bar{S}})$ since $\overline{Q S}=\overline{Q \bar{S}}$. Hence $Q \mathcal{N} \subseteq \mathcal{N}$.
- $(S-\bar{S})^{m}=\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} S^{m-i} \bar{S}^{i}=\left(\sum_{i=0}^{m}(-1)^{i}\binom{m}{i}\right) \bar{S}=0$.

A nilpotent ideal

- If S is reflexive, then $\Delta \subseteq S \subseteq S^{2} \subseteq \ldots \subseteq S^{m}=S^{m+1}$. This limit is the transitive closure of S, denoted by \bar{S}. It is a preorder.
- There are two cases:
- either \bar{S} is not an order. Then $\bar{S}=0$ in \mathcal{E}.
- or \bar{S} is an order. Then $\Delta \subseteq S \subseteq \bar{S} \Longrightarrow S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S-\bar{S}) \Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.
Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E}.
Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N}-\{0\}$ such that $S^{m}=\bar{S}$.

- Let $Q \supseteq \Delta$. Then $Q(S-\bar{S})=Q S-Q \bar{S}=(Q S-\overline{Q S})-(Q \bar{S}-\overline{Q \bar{S}})$ since $\overline{Q S}=\overline{Q \bar{S}}$. Hence $Q \mathcal{N} \subseteq \mathcal{N}$.
- $(S-\bar{S})^{m}=\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} S^{m-i} \bar{S}^{i}=\left(\sum_{i=0}^{m}(-1)^{i}\binom{m}{i}\right) \bar{S}=0$.

Permuted orders

Permuted orders

- Let $\mathcal{P}=\mathcal{E} / \mathcal{N}$

Permuted orders

- Let $\mathcal{P}=\mathcal{E} / \mathcal{N}$, called the algebra of permuted orders on X.

Permuted orders

- Let $\mathcal{P}=\mathcal{E} / \mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S \Delta_{\sigma}$

Permuted orders

- Let $\mathcal{P}=\mathcal{E} / \mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S \Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$.

Permuted orders

- Let $\mathcal{P}=\mathcal{E} / \mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S \Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. ($S \Delta_{\sigma}=\bar{S} \Delta_{\sigma}$ in \mathcal{P}, and $\bar{S}=0$ if \bar{S} is not an order)

Permuted orders

- Let $\mathcal{P}=\mathcal{E} / \mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S \Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S \Delta_{\sigma} . T \Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S .}{ }^{\sigma} T \Delta_{\sigma \tau}$

Permuted orders

- Let $\mathcal{P}=\mathcal{E} / \mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S \Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S \Delta_{\sigma} . T \Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S .}{ }^{\sigma} T \Delta_{\sigma \tau}$ if $\overline{S .}{ }^{\sigma} T$ is an order

Permuted orders

- Let $\mathcal{P}=\mathcal{E} / \mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S \Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S \Delta_{\sigma} . T \Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S .}{ }^{\sigma} T \Delta_{\sigma \tau}$ if $\overline{S .}{ }^{\sigma} T$ is an order, and to 0 otherwise

Permuted orders

- Let $\mathcal{P}=\mathcal{E} / \mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S \Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S \Delta_{\sigma} . T \Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S .}{ }^{\sigma} T \Delta_{\sigma \tau}$ if $\overline{S .}{ }^{\sigma} T$ is an order, and to 0 otherwise, where ${ }^{\sigma} T=\Delta_{\sigma} T \Delta_{\sigma^{-1}}$.

Permuted orders

- Let $\mathcal{P}=\mathcal{E} / \mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S \Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S \Delta_{\sigma} . T \Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S .}{ }^{\sigma} T \Delta_{\sigma \tau}$ if $\overline{S .}{ }^{\sigma} T$ is an order, and to 0 otherwise, where ${ }^{\sigma} T=\Delta_{\sigma} T \Delta_{\sigma^{-1}}$.
- The algebra \mathcal{P} is Σ-graded:

Permuted orders

- Let $\mathcal{P}=\mathcal{E} / \mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S \Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S \Delta_{\sigma} . T \Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S .{ }^{\sigma} T} \Delta_{\sigma \tau}$ if $\overline{S .{ }^{\sigma} T}$ is an order, and to 0 otherwise, where ${ }^{\sigma} T=\Delta_{\sigma} T \Delta_{\sigma^{-1}}$.
- The algebra \mathcal{P} is Σ-graded: for $\sigma \in \Sigma$

Permuted orders

- Let $\mathcal{P}=\mathcal{E} / \mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S \Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S \Delta_{\sigma} . T \Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S .}{ }^{\sigma} T \Delta_{\sigma \tau}$ if $\overline{S .}{ }^{\sigma} T$ is an order, and to 0 otherwise, where ${ }^{\sigma} T=\Delta_{\sigma} T \Delta_{\sigma^{-1}}$.
- The algebra \mathcal{P} is Σ-graded: for $\sigma \in \Sigma$, the degree σ part \mathcal{P}_{σ} of \mathcal{P} is the k-submodule generated by the elements $S \Delta_{\sigma}$, where S is an order.

Permuted orders

- Let $\mathcal{P}=\mathcal{E} / \mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S \Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S \Delta_{\sigma} . T \Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S .}{ }^{\sigma} T \Delta_{\sigma \tau}$ if $\overline{S .}{ }^{\sigma} T$ is an order, and to 0 otherwise, where ${ }^{\sigma} T=\Delta_{\sigma} T \Delta_{\sigma^{-1}}$.
- The algebra \mathcal{P} is Σ-graded: for $\sigma \in \Sigma$, the degree σ part \mathcal{P}_{σ} of \mathcal{P} is the k-submodule generated by the elements $S \Delta_{\sigma}$, where S is an order.
- The subalgebra \mathcal{P}_{1} has a k-basis consisting of the set \mathcal{O} of orders on X.

Permuted orders

- Let $\mathcal{P}=\mathcal{E} / \mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S \Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S \Delta_{\sigma} . T \Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S .}{ }^{\sigma} T \Delta_{\sigma \tau}$ if $\overline{S .}{ }^{\sigma} T$ is an order, and to 0 otherwise, where ${ }^{\sigma} T=\Delta_{\sigma} T \Delta_{\sigma^{-1}}$.
- The algebra \mathcal{P} is Σ-graded: for $\sigma \in \Sigma$, the degree σ part \mathcal{P}_{σ} of \mathcal{P} is the k-submodule generated by the elements $S \Delta_{\sigma}$, where S is an order.
- The subalgebra \mathcal{P}_{1} has a k-basis consisting of the set \mathcal{O} of orders on X. For $S, T \in \mathcal{O}$, the product $S T$ in \mathcal{P}_{1}

Permuted orders

- Let $\mathcal{P}=\mathcal{E} / \mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S \Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S \Delta_{\sigma} . T \Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S .}{ }^{\sigma} T \Delta_{\sigma \tau}$ if $\overline{S .{ }^{\sigma} T}$ is an order, and to 0 otherwise, where ${ }^{\sigma} T=\Delta_{\sigma} T \Delta_{\sigma^{-1}}$.
- The algebra \mathcal{P} is Σ-graded: for $\sigma \in \Sigma$, the degree σ part \mathcal{P}_{σ} of \mathcal{P} is the k-submodule generated by the elements $S \Delta_{\sigma}$, where S is an order.
- The subalgebra \mathcal{P}_{1} has a k-basis consisting of the set \mathcal{O} of orders on X. For $S, T \in \mathcal{O}$, the product $S T$ in \mathcal{P}_{1} is equal to $\overline{S T}=\overline{S \cup T}$.

Permuted orders

- Let $\mathcal{P}=\mathcal{E} / \mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S \Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S \Delta_{\sigma} . T \Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S .}{ }^{\sigma} T \Delta_{\sigma \tau}$ if $\overline{S .{ }^{\sigma} T}$ is an order, and to 0 otherwise, where ${ }^{\sigma} T=\Delta_{\sigma} T \Delta_{\sigma^{-1}}$.
- The algebra \mathcal{P} is Σ-graded: for $\sigma \in \Sigma$, the degree σ part \mathcal{P}_{σ} of \mathcal{P} is the k-submodule generated by the elements $S \Delta_{\sigma}$, where S is an order.
- The subalgebra \mathcal{P}_{1} has a k-basis consisting of the set \mathcal{O} of orders on X. For $S, T \in \mathcal{O}$, the product $S T$ in \mathcal{P}_{1} is equal to $\overline{S T}=\overline{S \cup T}$. Hence \mathcal{P}_{1} is commutative.

Permuted orders

- Let $\mathcal{P}=\mathcal{E} / \mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S \Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S \Delta_{\sigma} . T \Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S .}{ }^{\sigma} T \Delta_{\sigma \tau}$ if $\overline{S .{ }^{\sigma} T}$ is an order, and to 0 otherwise, where ${ }^{\sigma} T=\Delta_{\sigma} T \Delta_{\sigma^{-1}}$.
- The algebra \mathcal{P} is Σ-graded: for $\sigma \in \Sigma$, the degree σ part \mathcal{P}_{σ} of \mathcal{P} is the k-submodule generated by the elements $S \Delta_{\sigma}$, where S is an order.
- The subalgebra \mathcal{P}_{1} has a k-basis consisting of the set \mathcal{O} of orders on X. For $S, T \in \mathcal{O}$, the product $S T$ in \mathcal{P}_{1} is equal to $\overline{S T}=\overline{S \cup T}$. Hence \mathcal{P}_{1} is commutative.
- The group Σ acts on \mathcal{P}_{1} by conjugation

Permuted orders

- Let $\mathcal{P}=\mathcal{E} / \mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S \Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S \Delta_{\sigma} . T \Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S .{ }^{\sigma} T} \Delta_{\sigma \tau}$ if $\overline{S .{ }^{\sigma} T}$ is an order, and to 0 otherwise, where ${ }^{\sigma} T=\Delta_{\sigma} T \Delta_{\sigma^{-1}}$.
- The algebra \mathcal{P} is Σ-graded: for $\sigma \in \Sigma$, the degree σ part \mathcal{P}_{σ} of \mathcal{P} is the k-submodule generated by the elements $S \Delta_{\sigma}$, where S is an order.
- The subalgebra \mathcal{P}_{1} has a k-basis consisting of the set \mathcal{O} of orders on X. For $S, T \in \mathcal{O}$, the product $S T$ in \mathcal{P}_{1} is equal to $\overline{S T}=\overline{S \cup T}$. Hence \mathcal{P}_{1} is commutative.
- The group Σ acts on \mathcal{P}_{1} by conjugation, and \mathcal{P} is the semidirect product $\mathcal{P}_{1} \rtimes \Sigma$.

The algebra of permuted orders

The algebra of permuted orders

If $R \in \mathcal{O}$, then $R^{2}=R$.

The algebra of permuted orders

$$
\text { If } R \in \mathcal{O} \text {, then } R^{2}=R \text {. If } R, S \in \mathcal{O} \text {, then } R S=\overline{R \cup S}
$$

The algebra of permuted orders

If $R \in \mathcal{O}$, then $R^{2}=R$. If $R, S \in \mathcal{O}$, then $R S=\overline{R \cup S}=\operatorname{Sup}_{\mathcal{O}}(R, S)$ or 0

The algebra of permuted orders

If $R \in \mathcal{O}$, then $R^{2}=R$. If $R, S \in \mathcal{O}$, then $R S=\overline{R \cup S}=\operatorname{Sup}_{\mathcal{O}}(R, S)$ or 0 , where \mathcal{O} is ordered by inclusion.

The algebra of permuted orders

If $R \in \mathcal{O}$, then $R^{2}=R$. If $R, S \in \mathcal{O}$, then $R S=\overline{R \cup S}=\operatorname{Sup}_{\mathcal{O}}(R, S)$ or 0 , where \mathcal{O} is ordered by inclusion.

Notation

For $R \in \mathcal{O}$, let $f_{R} \in \mathcal{P}_{1}$ defined by

The algebra of permuted orders

If $R \in \mathcal{O}$, then $R^{2}=R$. If $R, S \in \mathcal{O}$, then $R S=\overline{R \cup S}=\operatorname{Sup}_{\mathcal{O}}(R, S)$ or 0 , where \mathcal{O} is ordered by inclusion.

Notation

For $R \in \mathcal{O}$, let $f_{R} \in \mathcal{P}_{1}$ defined by $f_{R}=\sum_{R \subseteq S \in \mathcal{O}} \mu_{\mathcal{O}}(R, S) S$

The algebra of permuted orders

If $R \in \mathcal{O}$, then $R^{2}=R$. If $R, S \in \mathcal{O}$, then $R S=\overline{R \cup S}=\operatorname{Sup}_{\mathcal{O}}(R, S)$ or 0 , where \mathcal{O} is ordered by inclusion.

Notation

For $R \in \mathcal{O}$, let $f_{R} \in \mathcal{P}_{1}$ defined by $f_{R}=\sum_{R \subseteq S \in \mathcal{O}} \mu_{\mathcal{O}}(R, S) S$, where $\mu_{\mathcal{O}}$ is the Möbius function of the poset \mathcal{O}.

The algebra of permuted orders

If $R \in \mathcal{O}$, then $R^{2}=R$. If $R, S \in \mathcal{O}$, then $R S=\overline{R \cup S}=\operatorname{Sup}_{\mathcal{O}}(R, S)$ or 0 , where \mathcal{O} is ordered by inclusion.

Notation

For $R \in \mathcal{O}$, let $f_{R} \in \mathcal{P}_{1}$ defined by $f_{R}=\sum_{R \subseteq S \in \mathcal{O}} \mu_{\mathcal{O}}(R, S) S$, where $\mu_{\mathcal{O}}$ is the Möbius function of the poset \mathcal{O}.

Theorem

(1) The elements f_{R}, for $R \in \mathcal{O}$

The algebra of permuted orders

If $R \in \mathcal{O}$, then $R^{2}=R$. If $R, S \in \mathcal{O}$, then $R S=\overline{R \cup S}=\operatorname{Sup}_{\mathcal{O}}(R, S)$ or 0 , where \mathcal{O} is ordered by inclusion.

Notation

For $R \in \mathcal{O}$, let $f_{R} \in \mathcal{P}_{1}$ defined by $f_{R}=\sum_{R \subseteq S \in \mathcal{O}} \mu_{\mathcal{O}}(R, S) S$, where $\mu_{\mathcal{O}}$ is the Möbius function of the poset \mathcal{O}.

Theorem

(1) The elements f_{R}, for $R \in \mathcal{O}$, are orthogonal idempotents of \mathcal{P}_{1}

The algebra of permuted orders

If $R \in \mathcal{O}$, then $R^{2}=R$. If $R, S \in \mathcal{O}$, then $R S=\overline{R \cup S}=\operatorname{Sup}_{\mathcal{O}}(R, S)$ or 0 , where \mathcal{O} is ordered by inclusion.

Notation

For $R \in \mathcal{O}$, let $f_{R} \in \mathcal{P}_{1}$ defined by $f_{R}=\sum_{R \subseteq S \in \mathcal{O}} \mu_{\mathcal{O}}(R, S) S$, where $\mu_{\mathcal{O}}$ is the Möbius function of the poset \mathcal{O}.

Theorem

(1) The elements f_{R}, for $R \in \mathcal{O}$, are orthogonal idempotents of \mathcal{P}_{1}, and $\sum_{R \in \mathcal{O}} f_{R}=1$.

The algebra of permuted orders

If $R \in \mathcal{O}$, then $R^{2}=R$. If $R, S \in \mathcal{O}$, then $R S=\overline{R \cup S}=\operatorname{Sup}_{\mathcal{O}}(R, S)$ or 0 , where \mathcal{O} is ordered by inclusion.

Notation

For $R \in \mathcal{O}$, let $f_{R} \in \mathcal{P}_{1}$ defined by $f_{R}=\sum_{R \subseteq S \in \mathcal{O}} \mu_{\mathcal{O}}(R, S) S$, where $\mu_{\mathcal{O}}$ is the Möbius function of the poset \mathcal{O}.

Theorem

(1) The elements f_{R}, for $R \in \mathcal{O}$, are orthogonal idempotents of \mathcal{P}_{1}, and $\sum_{R \in \mathcal{O}} f_{R}=1$.
(2) Moreover $\mathcal{P}_{1} f_{R}=k f_{R}$, for $R \in \mathcal{O}$.

The algebra of permuted orders

If $R \in \mathcal{O}$, then $R^{2}=R$. If $R, S \in \mathcal{O}$, then $R S=\overline{R \cup S}=\operatorname{Sup}_{\mathcal{O}}(R, S)$ or 0 , where \mathcal{O} is ordered by inclusion.

Notation

For $R \in \mathcal{O}$, let $f_{R} \in \mathcal{P}_{1}$ defined by $f_{R}=\sum_{R \subseteq S \in \mathcal{O}} \mu_{\mathcal{O}}(R, S) S$, where $\mu_{\mathcal{O}}$ is the Möbius function of the poset \mathcal{O}.

Theorem

(1) The elements f_{R}, for $R \in \mathcal{O}$, are orthogonal idempotents of \mathcal{P}_{1}, and

$$
\sum_{R \in \mathcal{O}} f_{R}=1
$$

(2) Moreover $\mathcal{P}_{1} f_{R}=k f_{R}$, for $R \in \mathcal{O}$.
(3) The algebra \mathcal{P}_{1} is isomorphic to $\prod_{R \in \mathcal{O}} k f_{R} \cong k^{|\mathcal{O}|}$.

The algebra of permuted orders

The algebra of permuted orders

Notation
 For $R \in \mathcal{O}$, set $\Sigma_{R}=\left\{\sigma \in \Sigma \mid{ }^{\sigma} R=R\right\}$

The algebra of permuted orders

Notation

For $R \in \mathcal{O}$, set $\Sigma_{R}=\left\{\sigma \in \Sigma \mid{ }^{\sigma} R=R\right\}$, and $e_{R}=\sum_{\sigma \in\left[\Sigma / \Sigma_{R}\right]} f_{\sigma}$.

The algebra of permuted orders

Notation

For $R \in \mathcal{O}$, set $\Sigma_{R}=\left\{\sigma \in \Sigma \mid{ }^{\sigma} R=R\right\}$, and $e_{R}=\sum_{\sigma \in\left[\Sigma / \Sigma_{R}\right]} f_{\sigma} R$.

Theorem

(1) The elements e_{R}, for $R \in[\Sigma \backslash \mathcal{O}]$, are orthogonal central idempotents of \mathcal{P}

The algebra of permuted orders

Notation

For $R \in \mathcal{O}$, set $\Sigma_{R}=\left\{\sigma \in \Sigma \mid{ }^{\sigma} R=R\right\}$, and $e_{R}=\sum_{\sigma \in\left[\Sigma / \Sigma_{R}\right]} f_{\sigma}$.

Theorem

(1) The elements e_{R}, for $R \in[\Sigma \backslash \mathcal{O}]$, are orthogonal central idempotents

$$
\text { of } \mathcal{P} \text {, and } \sum_{R \in[\Sigma \backslash \mathcal{O}]} e_{R}=1 \text {. }
$$

The algebra of permuted orders

Notation

For $R \in \mathcal{O}$, set $\Sigma_{R}=\left\{\sigma \in \Sigma \mid{ }^{\sigma} R=R\right\}$, and $e_{R}=\sum_{\sigma \in\left[\Sigma / \Sigma_{R}\right]} f_{\sigma}$.

Theorem

(1) The elements e_{R}, for $R \in[\Sigma \backslash \mathcal{O}]$, are orthogonal central idempotents of \mathcal{P}, and $\sum_{R \in[\Sigma \backslash \mathcal{O}]} e_{R}=1$.
(2) The algebra \mathcal{P} is isomorphic to $\prod_{R \in[\Sigma \backslash \mathcal{O}]} \mathcal{P} e_{R}$.

The algebra of permuted orders

Notation

For $R \in \mathcal{O}$, set $\Sigma_{R}=\left\{\sigma \in \Sigma \mid{ }^{\sigma} R=R\right\}$, and $e_{R}=\sum_{\sigma \in\left[\Sigma / \Sigma_{R}\right]} f_{\sigma}$.

Theorem

(1) The elements e_{R}, for $R \in[\Sigma \backslash \mathcal{O}]$, are orthogonal central idempotents of \mathcal{P}, and $\sum_{R \in[\Sigma \backslash \mathcal{O}]} e_{R}=1$.
(2) The algebra \mathcal{P} is isomorphic to $\prod_{R \in[\Sigma \backslash \mathcal{O}]} \mathcal{P} e_{R}$.
(3) For $R \in \mathcal{O}$, the algebra $\mathcal{P} e_{R}$ is isomorphic to $\operatorname{Mat}_{\left|\Sigma: \Sigma_{R}\right|}\left(k \Sigma_{R}\right)$.

The simple \mathcal{E}-modules

The simple \mathcal{E}-modules

Assume that k is a field.

The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P}=\mathcal{E} / \mathcal{N}$

The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P}=\mathcal{E} / \mathcal{N}$, where \mathcal{N} is nilpotent

The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P}=\mathcal{E} / \mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in[\Sigma \backslash \mathcal{O}]} M a t_{\left|\Sigma: \Sigma_{R}\right|}\left(k \Sigma_{R}\right)$.

The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P}=\mathcal{E} / \mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in[\Sigma \backslash \mathcal{O}]} M a t_{\left|\Sigma: \Sigma_{R}\right|}\left(k \Sigma_{R}\right)$.

Theorem

(1) The surjection $\mathcal{E} \longrightarrow \mathcal{P}$

The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P}=\mathcal{E} / \mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in[\Sigma \backslash \mathcal{O}]} M a t_{\left|\Sigma: \Sigma_{R}\right|}\left(k \Sigma_{R}\right)$.

Theorem

(1) The surjection $\mathcal{E} \longrightarrow \mathcal{P}$ induces a one to one correspondence between the simple \mathcal{E}-modules and the simple \mathcal{P}-modules.

The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P}=\mathcal{E} / \mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in[\Sigma \backslash \mathcal{O}]} M a t_{\left|\Sigma: \Sigma_{R}\right|}\left(k \Sigma_{R}\right)$.

Theorem

(1) The surjection $\mathcal{E} \longrightarrow \mathcal{P}$ induces a one to one correspondence between the simple \mathcal{E}-modules and the simple \mathcal{P}-modules.
(2) Let $R \in \mathcal{O}$.

The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P}=\mathcal{E} / \mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in[\Sigma \backslash \mathcal{O}]} M a t_{\left|\Sigma: \Sigma_{R}\right|}\left(k \Sigma_{R}\right)$.

Theorem

(1) The surjection $\mathcal{E} \longrightarrow \mathcal{P}$ induces a one to one correspondence between the simple \mathcal{E}-modules and the simple \mathcal{P}-modules.
(2) Let $R \in \mathcal{O}$. Then $\mathcal{P} f_{R}$ has a k-basis $\left\{\Delta_{\sigma} f_{R} \mid \sigma \in \Sigma\right\}$,

The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P}=\mathcal{E} / \mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in[\Sigma \backslash \mathcal{O}]} M a t_{\left|\Sigma: \Sigma_{R}\right|}\left(k \Sigma_{R}\right)$.

Theorem

(1) The surjection $\mathcal{E} \longrightarrow \mathcal{P}$ induces a one to one correspondence between the simple \mathcal{E}-modules and the simple \mathcal{P}-modules.
(2) Let $R \in \mathcal{O}$. Then $\mathcal{P} f_{R}$ has a k-basis $\left\{\Delta_{\sigma} f_{R} \mid \sigma \in \Sigma\right\}$, so $\mathcal{P} f_{R} \cong{ }_{k} k \Sigma$.

The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P}=\mathcal{E} / \mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in[\Sigma \backslash \mathcal{O}]} M a t_{\left|\Sigma: \Sigma_{R}\right|}\left(k \Sigma_{R}\right)$.

Theorem

(1) The surjection $\mathcal{E} \longrightarrow \mathcal{P}$ induces a one to one correspondence between the simple \mathcal{E}-modules and the simple \mathcal{P}-modules.
(2) Let $R \in \mathcal{O}$. Then $\mathcal{P} f_{R}$ has a k-basis $\left\{\Delta_{\sigma} f_{R} \mid \sigma \in \Sigma\right\}$, so $\mathcal{P} f_{R} \cong{ }_{k} k \Sigma$. It is an $\left(\mathcal{R}, k \Sigma_{R}\right)$-bimodule

The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P}=\mathcal{E} / \mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in[\Sigma \backslash \mathcal{O}]} M a t_{\left|\Sigma: \Sigma_{R}\right|}\left(k \Sigma_{R}\right)$.

Theorem

(1) The surjection $\mathcal{E} \longrightarrow \mathcal{P}$ induces a one to one correspondence between the simple \mathcal{E}-modules and the simple \mathcal{P}-modules.
(2) Let $R \in \mathcal{O}$. Then $\mathcal{P} f_{R}$ has a k-basis $\left\{\Delta_{\sigma} f_{R} \mid \sigma \in \Sigma\right\}$, so $\mathcal{P} f_{R} \cong{ }_{k} k \Sigma$. It is an $\left(\mathcal{R}, k \Sigma_{R}\right)$-bimodule, free as a right $k \Sigma_{R}$-module.

The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P}=\mathcal{E} / \mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in[\Sigma \backslash \mathcal{O}]} M a t_{\left|\Sigma: \Sigma_{R}\right|}\left(k \Sigma_{R}\right)$.

Theorem

(1) The surjection $\mathcal{E} \longrightarrow \mathcal{P}$ induces a one to one correspondence between the simple \mathcal{E}-modules and the simple \mathcal{P}-modules.
(2) Let $R \in \mathcal{O}$. Then $\mathcal{P} f_{R}$ has a k-basis $\left\{\Delta_{\sigma} f_{R} \mid \sigma \in \Sigma\right\}$, so $\mathcal{P} f_{R} \cong{ }_{k} k \Sigma$. It is an $\left(\mathcal{R}, k \Sigma_{R}\right)$-bimodule, free as a right $k \Sigma_{R}$-module.
(3) The simple \mathcal{P}-modules (up to isomorphism) are the modules of the form $\mathcal{P} f_{R} \otimes_{k \Sigma_{R}} W$

The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P}=\mathcal{E} / \mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in[\Sigma \backslash \mathcal{O}]} M a t_{\left|\Sigma: \Sigma_{R}\right|}\left(k \Sigma_{R}\right)$.

Theorem

(1) The surjection $\mathcal{E} \longrightarrow \mathcal{P}$ induces a one to one correspondence between the simple \mathcal{E}-modules and the simple \mathcal{P}-modules.
(2) Let $R \in \mathcal{O}$. Then $\mathcal{P} f_{R}$ has a k-basis $\left\{\Delta_{\sigma} f_{R} \mid \sigma \in \Sigma\right\}$, so $\mathcal{P} f_{R} \cong{ }_{k} k \Sigma$. It is an $\left(\mathcal{R}, k \Sigma_{R}\right)$-bimodule, free as a right $k \Sigma_{R}$-module.
(3) The simple \mathcal{P}-modules (up to isomorphism) are the modules of the form $\mathcal{P} f_{R} \otimes_{k} \Sigma_{R} W$, where $R \in[\Sigma \backslash \mathcal{O}]$

The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P}=\mathcal{E} / \mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in[\Sigma \backslash \mathcal{O}]} M a t_{\left|\Sigma: \Sigma_{R}\right|}\left(k \Sigma_{R}\right)$.

Theorem

(1) The surjection $\mathcal{E} \longrightarrow \mathcal{P}$ induces a one to one correspondence between the simple \mathcal{E}-modules and the simple \mathcal{P}-modules.
(2) Let $R \in \mathcal{O}$. Then $\mathcal{P} f_{R}$ has a k-basis $\left\{\Delta_{\sigma} f_{R} \mid \sigma \in \Sigma\right\}$, so $\mathcal{P} f_{R} \cong{ }_{k} k \Sigma$. It is an $\left(\mathcal{R}, k \Sigma_{R}\right)$-bimodule, free as a right $k \Sigma_{R}$-module.
(3) The simple \mathcal{P}-modules (up to isomorphism) are the modules of the form $\mathcal{P} f_{R} \otimes_{k \Sigma_{R}} W$, where $R \in[\Sigma \backslash \mathcal{O}]$, and W is a simple $k \Sigma_{R}$-module (up to isomorphism).

The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P}=\mathcal{E} / \mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in[\Sigma \backslash \mathcal{O}]} M a t_{\left|\Sigma: \Sigma_{R}\right|}\left(k \Sigma_{R}\right)$.

Theorem

(1) The surjection $\mathcal{E} \longrightarrow \mathcal{P}$ induces a one to one correspondence between the simple \mathcal{E}-modules and the simple \mathcal{P}-modules.
(2) Let $R \in \mathcal{O}$. Then $\mathcal{P} f_{R}$ has a k-basis $\left\{\Delta_{\sigma} f_{R} \mid \sigma \in \Sigma\right\}$, so $\mathcal{P} f_{R} \cong{ }_{k} k \Sigma$. It is an $\left(\mathcal{R}, k \Sigma_{R}\right)$-bimodule, free as a right $k \Sigma_{R}$-module.
(3) The simple \mathcal{P}-modules (up to isomorphism) are the modules of the form $\mathcal{P} f_{R} \otimes_{k \Sigma_{R}} W$, where $R \in[\Sigma \backslash \mathcal{O}]$, and W is a simple $k \Sigma_{R}$-module (up to isomorphism).
(9) If $\operatorname{char}(k)=0$ or char $(k)>n$, then \mathcal{P} is semisimple

The simple \mathcal{E}-modules

Assume that k is a field. Recall that $\mathcal{P}=\mathcal{E} / \mathcal{N}$, where \mathcal{N} is nilpotent, and that $\mathcal{P} \cong \prod_{R \in[\Sigma \backslash \mathcal{O}]} M a t_{\left|\Sigma: \Sigma_{R}\right|}\left(k \Sigma_{R}\right)$.

Theorem

(1) The surjection $\mathcal{E} \longrightarrow \mathcal{P}$ induces a one to one correspondence between the simple \mathcal{E}-modules and the simple \mathcal{P}-modules.
(2) Let $R \in \mathcal{O}$. Then $\mathcal{P} f_{R}$ has a k-basis $\left\{\Delta_{\sigma} f_{R} \mid \sigma \in \Sigma\right\}$, so $\mathcal{P} f_{R} \cong{ }_{k} k \Sigma$. It is an $\left(\mathcal{R}, k \Sigma_{R}\right)$-bimodule, free as a right $k \Sigma_{R}$-module.
(3) The simple \mathcal{P}-modules (up to isomorphism) are the modules of the form $\mathcal{P} f_{R} \otimes_{k} \Sigma_{R} W$, where $R \in[\Sigma \backslash \mathcal{O}]$, and W is a simple $k \Sigma_{R}$-module (up to isomorphism).
(9) If $\operatorname{char}(k)=0$ or char $(k)>n$, then \mathcal{P} is semisimple, and $\mathcal{N}=J(\mathcal{E})$.

Some simple \mathcal{R}_{X}-modules

Some simple \mathcal{R}_{X}-modules

Proposition
 Let R be an order on X.

Some simple \mathcal{R}_{X}-modules

Proposition

Let R be an order on X. If $S \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta_{R}(S)$ of $k \Sigma$ by

$$
\beta_{R}(S): \sigma \in \Sigma \mapsto
$$

Some simple \mathcal{R}_{X}-modules

Proposition

Let R be an order on X. If $S \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta_{R}(S)$ of $k \Sigma$ by

$$
\beta_{R}(S): \sigma \in \Sigma \mapsto \begin{cases}\tau \sigma & \text { if } \tau \in \Sigma, \Delta \subseteq \Delta_{\tau^{-1}} S \subseteq{ }^{\sigma} R\end{cases}
$$

Some simple \mathcal{R}_{X}-modules

Proposition

Let R be an order on X. If $S \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta_{R}(S)$ of $k \Sigma$ by

$$
\beta_{R}(S): \sigma \in \Sigma \mapsto\left\{\begin{array}{cl}
\tau \sigma & \text { if } \tau \in \Sigma, \Delta \subseteq \Delta_{\tau^{-1}} S \subseteq{ }^{\sigma} R \\
0 & \text { if no such } \tau
\end{array}\right.
$$

Some simple \mathcal{R}_{X}-modules

Proposition

Let R be an order on X. If $S \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta_{R}(S)$ of $k \Sigma$ by

$$
\beta_{R}(S): \sigma \in \Sigma \mapsto\left\{\begin{array}{cl}
\tau \sigma & \text { if } \tau \in \Sigma, \Delta \subseteq \Delta_{\tau^{-1}} S \subseteq{ }^{\sigma} R \\
0 & \text { if no such } \tau
\end{array}\right.
$$

(1) The $\operatorname{map} \beta_{R}(S)$ is well defined

Some simple \mathcal{R}_{X}-modules

Proposition

Let R be an order on X. If $S \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta_{R}(S)$ of $k \Sigma$ by

$$
\beta_{R}(S): \sigma \in \Sigma \mapsto\left\{\begin{array}{cl}
\tau \sigma & \text { if } \tau \in \Sigma, \Delta \subseteq \Delta_{\tau^{-1}} S \subseteq{ }^{\sigma} R \\
0 & \text { if no such } \tau
\end{array}\right.
$$

(1) The map $\beta_{R}(S)$ is well defined, and $\beta_{R}(S) \in \operatorname{End}_{k \Sigma_{R}}(k \Sigma)$.

Some simple \mathcal{R}_{X}-modules

Proposition

Let R be an order on X. If $S \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta_{R}(S)$ of $k \Sigma$ by

$$
\beta_{R}(S): \sigma \in \Sigma \mapsto\left\{\begin{array}{cl}
\tau \sigma & \text { if } \tau \in \Sigma, \Delta \subseteq \Delta_{\tau^{-1}} S \subseteq{ }^{\sigma} R \\
0 & \text { if no such } \tau
\end{array}\right.
$$

(1) The map $\beta_{R}(S)$ is well defined, and $\beta_{R}(S) \in \operatorname{End}_{k \Sigma_{R}}(k \Sigma)$.
(2) The map $S \mapsto \beta_{R}(S)$ extends to an algebra homomorphism

$$
k \mathcal{C}(X, X)=\mathcal{R}_{X} \rightarrow \operatorname{End}_{k \Sigma_{R}}(k \Sigma)
$$

Some simple \mathcal{R}_{X}-modules

Proposition

Let R be an order on X. If $S \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta_{R}(S)$ of $k \Sigma$ by

$$
\beta_{R}(S): \sigma \in \Sigma \mapsto\left\{\begin{array}{cl}
\tau \sigma & \text { if } \tau \in \Sigma, \Delta \subseteq \Delta_{\tau^{-1}} S \subseteq{ }^{\sigma} R \\
0 & \text { if no such } \tau
\end{array}\right.
$$

(1) The map $\beta_{R}(S)$ is well defined, and $\beta_{R}(S) \in \operatorname{End}_{k \Sigma_{R}}(k \Sigma)$.
(2) The map $S \mapsto \beta_{R}(S)$ extends to an algebra homomorphism $k \mathcal{C}(X, X)=\mathcal{R}_{X} \rightarrow \operatorname{End}_{k \Sigma_{R}}(k \Sigma)$, which endows $k \Sigma$ with a structure of $\left(\mathcal{R}_{X}, k \Sigma_{R}\right)$-bimodule.

Some simple \mathcal{R}_{X}-modules

Proposition

Let R be an order on X. If $S \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta_{R}(S)$ of $k \Sigma$ by

$$
\beta_{R}(S): \sigma \in \Sigma \mapsto\left\{\begin{array}{cl}
\tau \sigma & \text { if } \tau \in \Sigma, \Delta \subseteq \Delta_{\tau^{-1}} S \subseteq{ }^{\sigma} R \\
0 & \text { if no such } \tau
\end{array}\right.
$$

(1) The map $\beta_{R}(S)$ is well defined, and $\beta_{R}(S) \in \operatorname{End}_{k \Sigma_{R}}(k \Sigma)$.
(2) The map $S \mapsto \beta_{R}(S)$ extends to an algebra homomorphism $k \mathcal{C}(X, X)=\mathcal{R}_{X} \rightarrow \operatorname{End}_{k \Sigma_{R}}(k \Sigma)$, which endows $k \Sigma$ with a structure of $\left(\mathcal{R}_{X}, k \Sigma_{R}\right)$-bimodule.
(3) If W is a simple $k \Sigma_{R-m o d u l e}$

Some simple \mathcal{R}_{X}-modules

Proposition

Let R be an order on X. If $S \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta_{R}(S)$ of $k \Sigma$ by

$$
\beta_{R}(S): \sigma \in \Sigma \mapsto\left\{\begin{array}{cl}
\tau \sigma & \text { if } \tau \in \Sigma, \Delta \subseteq \Delta_{\tau^{-1}} S \subseteq{ }^{\sigma} R \\
0 & \text { if no such } \tau
\end{array}\right.
$$

(1) The map $\beta_{R}(S)$ is well defined, and $\beta_{R}(S) \in \operatorname{End}_{k \Sigma_{R}}(k \Sigma)$.
(2) The map $S \mapsto \beta_{R}(S)$ extends to an algebra homomorphism $k \mathcal{C}(X, X)=\mathcal{R}_{X} \rightarrow \operatorname{End}_{k \Sigma_{R}}(k \Sigma)$, which endows $k \Sigma$ with a structure of $\left(\mathcal{R}_{X}, k \Sigma_{R}\right)$-bimodule.
(3) If W is a simple $k \Sigma_{R}$-module, then $\Lambda_{R, W}=k \Sigma \otimes_{k} \Sigma_{R} W$ is a simple \mathcal{R}_{X}-module.

Some simple \mathcal{R}_{X}-modules

Proposition

Let R be an order on X. If $S \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta_{R}(S)$ of $k \Sigma$ by

$$
\beta_{R}(S): \sigma \in \Sigma \mapsto\left\{\begin{array}{cl}
\tau \sigma & \text { if } \tau \in \Sigma, \Delta \subseteq \Delta_{\tau^{-1}} S \subseteq{ }^{\sigma} R \\
0 & \text { if no such } \tau
\end{array}\right.
$$

(1) The map $\beta_{R}(S)$ is well defined, and $\beta_{R}(S) \in \operatorname{End}_{k \Sigma_{R}}(k \Sigma)$.
(2) The map $S \mapsto \beta_{R}(S)$ extends to an algebra homomorphism $k \mathcal{C}(X, X)=\mathcal{R}_{X} \rightarrow \operatorname{End}_{k \Sigma_{R}}(k \Sigma)$, which endows $k \Sigma$ with a structure of $\left(\mathcal{R}_{X}, k \Sigma_{R}\right)$-bimodule.
(3) If W is a simple $k \Sigma_{R}$-module, then $\Lambda_{R, W}=k \Sigma \otimes_{k \Sigma_{R}} W$ is a simple \mathcal{R}_{X}-module.
(9) If $\left(R^{\prime}, W^{\prime}\right)$ is another pair consisting of an order R^{\prime} on X and a simple $k \Sigma_{R^{\prime}}$-module

Some simple \mathcal{R}_{X}-modules

Proposition

Let R be an order on X. If $S \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta_{R}(S)$ of $k \Sigma$ by

$$
\beta_{R}(S): \sigma \in \Sigma \mapsto\left\{\begin{array}{cl}
\tau \sigma & \text { if } \tau \in \Sigma, \Delta \subseteq \Delta_{\tau^{-1}} S \subseteq{ }^{\sigma} R \\
0 & \text { if no such } \tau
\end{array}\right.
$$

(1) The map $\beta_{R}(S)$ is well defined, and $\beta_{R}(S) \in \operatorname{End}_{k \Sigma_{R}}(k \Sigma)$.
(2) The map $S \mapsto \beta_{R}(S)$ extends to an algebra homomorphism $k \mathcal{C}(X, X)=\mathcal{R}_{X} \rightarrow \operatorname{End}_{k \Sigma_{R}}(k \Sigma)$, which endows $k \Sigma$ with a structure of $\left(\mathcal{R}_{X}, k \Sigma_{R}\right)$-bimodule.
(3) If W is a simple $k \Sigma_{R}$-module, then $\Lambda_{R, W}=k \Sigma \otimes_{k \Sigma_{R}} W$ is a simple \mathcal{R}_{X}-module.
(9) If $\left(R^{\prime}, W^{\prime}\right)$ is another pair consisting of an order R^{\prime} on X and a simple $k \Sigma_{R^{\prime}}$-module, then the \mathcal{R}_{X}-modules $\Lambda_{R, W}$ and $\Lambda_{R^{\prime}, W^{\prime}}$ are isomorphic

Some simple \mathcal{R}_{X}-modules

Proposition

Let R be an order on X. If $S \in \mathcal{C}(X, X)$, define a k-endomorphism $\beta_{R}(S)$ of $k \Sigma$ by

$$
\beta_{R}(S): \sigma \in \Sigma \mapsto\left\{\begin{array}{cl}
\tau \sigma & \text { if } \tau \in \Sigma, \Delta \subseteq \Delta_{\tau^{-1}} S \subseteq{ }^{\sigma} R \\
0 & \text { if no such } \tau
\end{array}\right.
$$

(1) The map $\beta_{R}(S)$ is well defined, and $\beta_{R}(S) \in \operatorname{End}_{k \Sigma_{R}}(k \Sigma)$.
(2) The map $S \mapsto \beta_{R}(S)$ extends to an algebra homomorphism $k \mathcal{C}(X, X)=\mathcal{R}_{X} \rightarrow \operatorname{End}_{k \Sigma_{R}}(k \Sigma)$, which endows $k \Sigma$ with a structure of $\left(\mathcal{R}_{X}, k \Sigma_{R}\right)$-bimodule.
(3) If W is a simple $k \Sigma_{R}$-module, then $\Lambda_{R, W}=k \Sigma \otimes_{k \Sigma_{R}} W$ is a simple \mathcal{R}_{X}-module.
(9) If $\left(R^{\prime}, W^{\prime}\right)$ is another pair consisting of an order R^{\prime} on X and a simple $k \Sigma_{R^{\prime}}$-module, then the \mathcal{R}_{X}-modules $\Lambda_{R, W}$ and $\Lambda_{R^{\prime}, W^{\prime}}$ are isomorphic if and only if the pairs (R, W) and $\left(R^{\prime}, W^{\prime}\right)$ are conjugate by Σ.

Examples

Examples

Examples:

- If $R=\Delta$, then $\Sigma_{R}=\Sigma$

Examples

Examples:

- If $R=\Delta$, then $\Sigma_{R}=\Sigma$, and \mathcal{R}_{X} maps surjectively to $k \Sigma$, by $S \mapsto \sigma$ if $S=\Delta_{\sigma}$,

Examples

Examples:

- If $R=\Delta$, then $\Sigma_{R}=\Sigma$, and \mathcal{R}_{X} maps surjectively to $k \Sigma$, by $S \mapsto \sigma$ if $S=\Delta_{\sigma}$, and $S \mapsto 0$ is there is no such $\sigma \in \Sigma$.

Examples

Examples:

- If $R=\Delta$, then $\Sigma_{R}=\Sigma$, and \mathcal{R}_{X} maps surjectively to $k \Sigma$, by $S \mapsto \sigma$ if $S=\Delta_{\sigma}$, and $S \mapsto 0$ is there is no such $\sigma \in \Sigma$.
- If R is a total order, then $\Sigma_{R}=\{1\}$

Examples

Examples:

- If $R=\Delta$, then $\Sigma_{R}=\Sigma$, and \mathcal{R}_{X} maps surjectively to $k \Sigma$, by $S \mapsto \sigma$ if $S=\Delta_{\sigma}$, and $S \mapsto 0$ is there is no such $\sigma \in \Sigma$.
- If R is a total order, then $\Sigma_{R}=\{1\}$, and $\mathcal{P} e_{R} \cong M a t_{n!}(k)$.

Examples

Examples:

- If $R=\Delta$, then $\Sigma_{R}=\Sigma$, and \mathcal{R}_{X} maps surjectively to $k \Sigma$, by $S \mapsto \sigma$ if $S=\Delta_{\sigma}$, and $S \mapsto 0$ is there is no such $\sigma \in \Sigma$.
- If R is a total order, then $\Sigma_{R}=\{1\}$, and $\mathcal{P} e_{R} \cong M a t_{n!}(k)$. In this case $k \Sigma$ becomes a simple \mathcal{R}_{X}-module.

Remark

Examples:

- If $R=\Delta$, then $\Sigma_{R}=\Sigma$, and \mathcal{R}_{X} maps surjectively to $k \Sigma$, by $S \mapsto \sigma$ if $S=\Delta_{\sigma}$, and $S \mapsto 0$ is there is no such $\sigma \in \Sigma$.
- If R is a total order, then $\Sigma_{R}=\{1\}$, and $\mathcal{P} e_{R} \cong M a t_{n!}(k)$. In this case $k \Sigma$ becomes a simple \mathcal{R}_{X}-module.

Remark: Which finite groups can occur as Σ_{R} ?

Remark

Examples:

- If $R=\Delta$, then $\Sigma_{R}=\Sigma$, and \mathcal{R}_{X} maps surjectively to $k \Sigma$, by $S \mapsto \sigma$ if $S=\Delta_{\sigma}$, and $S \mapsto 0$ is there is no such $\sigma \in \Sigma$.
- If R is a total order, then $\Sigma_{R}=\{1\}$, and $\mathcal{P} e_{R} \cong M a t_{n!}(k)$. In this case $k \Sigma$ becomes a simple \mathcal{R}_{X}-module.

Remark: Which finite groups can occur as Σ_{R} ? Answer: all!

Remark

Examples:

- If $R=\Delta$, then $\Sigma_{R}=\Sigma$, and \mathcal{R}_{X} maps surjectively to $k \Sigma$, by $S \mapsto \sigma$ if $S=\Delta_{\sigma}$, and $S \mapsto 0$ is there is no such $\sigma \in \Sigma$.
- If R is a total order, then $\Sigma_{R}=\{1\}$, and $\mathcal{P} e_{R} \cong M a t_{n!}(k)$. In this case $k \Sigma$ becomes a simple \mathcal{R}_{X}-module.

Remark: Which finite groups can occur as Σ_{R} ? Answer: all! (Birkhoff 1946

Remark

Examples:

- If $R=\Delta$, then $\Sigma_{R}=\Sigma$, and \mathcal{R}_{X} maps surjectively to $k \Sigma$, by $S \mapsto \sigma$ if $S=\Delta_{\sigma}$, and $S \mapsto 0$ is there is no such $\sigma \in \Sigma$.
- If R is a total order, then $\Sigma_{R}=\{1\}$, and $\mathcal{P} e_{R} \cong M a t_{n!}(k)$. In this case $k \Sigma$ becomes a simple \mathcal{R}_{X}-module.

Remark: Which finite groups can occur as Σ_{R} ? Answer: all! (Birkhoff 1946, Thornton 1972

Remark

Examples:

- If $R=\Delta$, then $\Sigma_{R}=\Sigma$, and \mathcal{R}_{X} maps surjectively to $k \Sigma$, by $S \mapsto \sigma$ if $S=\Delta_{\sigma}$, and $S \mapsto 0$ is there is no such $\sigma \in \Sigma$.
- If R is a total order, then $\Sigma_{R}=\{1\}$, and $\mathcal{P} e_{R} \cong M a t_{n!}(k)$. In this case $k \Sigma$ becomes a simple \mathcal{R}_{X}-module.

Remark: Which finite groups can occur as Σ_{R} ? Answer: all! (Birkhoff 1946, Thornton 1972, Barmak-Minian 2009).

