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Correspondences, Relations

Let X and Y be finite sets. A correspondence from X to Y is a
subset of Y ×X . Let C(Y ,X ) denote the set of correspondences from
X to Y . A correspondence from X to X is called a relation on X .

Correspondences can be composed: if S ⊆ Z × Y and R ⊆ Y × X ,
then

S ◦ R(= SR) = {(z , x) ∈ Z × X | ∃y ∈ Y , (z , y) ∈ S , (y , x) ∈ R} .

This composition is associative.

In particular C(X ,X ) is a monoid, with identity element

∆X = {(x , x) | x ∈ X} ⊆ X × X .

More generally
R ◦∆X = R for any Y and any R ∈ C(Y ,X ),
∆X ◦ S = S for any Z and any S ∈ C(X ,Z ).
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When k is a commutative ring, let kC be the following category:

the objects of kC are the finite sets,

HomkC(X ,Y ) = kC(Y ,X ),

composition of morphisms extends composition of correspondences,

the identity morphism of X is ∆X ∈ kC(X ,X ).

A correspondence functor (over k) is a representation of kC over k , i.e. a
k-linear functor from kC to k-Mod. Let Fk denote the category of
correspondence functors over k . It is an abelian category.
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Representations of categories

Let D be an essentially small k-linear category, and Fk the category of
k-linear representations of D. Let moreover X be an object of D. Then:

EndD(X ) is a k-algebra.

For F ∈ Fk , the evaluation F (X ) is an EndD(X )-module.

The evaluation functor F 7→ F (X ) : Fk → EndD(X )-Mod has a left
adjoint V 7→ LX ,V such that for Y ∈ D

LX ,V (Y ) = D(Y ,X )⊗EndD(X ) V ,

When V is simple, the functor LX ,V has a unique maximal (proper)
subfunctor JX ,V , and the quotient SX ,V = LX ,V /JX ,V is a simple
object of Fk . Moreover SX ,V (X ) ∼= V .

Conversely, if S is a simple representation of D over k , and if
S(X ) 6= 0, then V = S(X ) is a simple EndD(X )-module, and
S ∼= SX ,V .
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Relations

For a finite set, the algebra EndkC(X ) = kC(X ,X ) is called the algebra of
relations on X .

A relation R ∈ C(X ,X ) is called inessential if there exists Y with
|Y | < |X |, and correspondences S ∈ C(X ,Y ) and T ∈ C(Y ,X ) such

that R = S ◦ T , i.e. X

T   

R // X

Y
S

>>

A relation R ∈ C(X ,X ) is called essential if it is not inessential.

Example: Suppose |X | ≥ 2, and R = U × V , for U,V ⊆ X . Then
Y = {y}, S = U × {y}, and T = {y} × V . Then R = S ◦ T is
inessential.

Let IX ⊆ RX = kC(X ,X ) denote the set of linear combinations of
inessential relations on X . Then IX is a two sided ideal of RX , and
the quotient EX = RX/IX is called the algebra of essential relations
on X .
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From now on, the set X is fixed (and understood). Set n = |X |,
E = EX , ∆ = ∆X ,. . .

The algebra E has a k-basis consisting of the essential relations on X .
In E , the product of two essential relations R and S is equal to R ◦ S
if R ◦ S is essential, and to 0 otherwise.

Classical definitions: if R is a relation, set
Rop = {(x , y) | (y , x) ∈ R}.

R is reflexive ⇐⇒ ∆ ⊆ R.
R is transitive ⇐⇒ R2 ⊆ R.
R is a preorder ⇐⇒ ∆ ⊆ R = R2.
R is symmetric ⇐⇒ R = R

op

.
R is an equivalence relation ⇐⇒ ∆ ⊆ R = Rop = R2.
R is antisymmetric ⇐⇒ R ∩ R

op ⊆ ∆.
R is an order ⇐⇒ R = R2 and R ∩ R

op

= ∆.
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if R ◦ S is essential, and to 0 otherwise.

Example: Let X = {1, 2}.

If R = 1 //

''
1

2

77

2

, then R2 = 1 //

''
1

2

77

// 2

= X × X = 0.
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If R = 1 //

''
1

2

77

2

, then R2 = 1 //

''
1

2

77

// 2

= X × X = 0.
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Characterization

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential ⇐⇒ ∃Ui ,Vi ⊆ X , 1 ≤ i ≤ n − 1 such

that R =
n−1⋃
i=1

(Ui × Vi ).

If R is a preorder, and not an order, then R is inessential.

If R is an order, and if ∆ ⊆ Q ⊆ R, then Q is essential.

Let Σ be the group of permutations of X . Then
σ ∈ Σ 7→ ∆σ = {

(
σ(x), x

)
| x ∈ X} ∈ C(X ,X ) is a monoid

homomorphism. Moreover ∆σ is essential.

Theorem

Let R be an essential relation on X . Then there exists σ ∈ Σ such that
R ⊇ ∆σ, i.e. R = S∆σ, where S is reflexive.

Proof: One direct proof, another one using a theorem of P. Hall (1935).
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Permutations

Recall that X is a finite set of cardinality n.
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A nilpotent ideal

If S is reflexive, then ∆ ⊆ S ⊆ S2 ⊆ . . . ⊆ Sm = Sm+1. This limit is
the transitive closure of S , denoted by S . It is a preorder.
There are two cases:

either S is not an order. Then S = 0 in E .
or S is an order. Then ∆ ⊆ S ⊆ S =⇒ S is essential.

Proposition

Let N be the k-submodule of E generated by the elements of the form
(S − S)∆σ, for ∆ ⊆ S and σ ∈ Σ.
Then N is a two sided nilpotent ideal of E .

Proof (sketch): Let S ⊇ ∆, and m ∈ N− {0} such that Sm = S .

Let Q ⊇ ∆. Then Q(S − S) = QS −QS = (QS −QS)− (QS −QS)

since QS = QS . Hence QN ⊆ N .

(S − S)m =
m∑
i=0

(−1)i
(m
i

)
Sm−iS

i
=
( m∑

i=0
(−1)i

(m
i

))
S = 0 .
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Permuted orders

Let P = E/N , called the algebra of permuted orders on X . It has a
k-basis consisting of relations S∆σ, where S is an order and σ ∈ Σ.
The product of S∆σ.T ∆τ in P is equal to S .σT ∆στ if S .σT is an
order, and to 0 otherwise, where σT = ∆σT ∆σ−1 .

The algebra P is Σ-graded: for σ ∈ Σ, the degree σ part Pσ of P is
the k-submodule generated by the elements S∆σ, where S is an order.

The subalgebra P1 has a k-basis consisting of the set O of orders
on X . For S ,T ∈ O, the product ST in P1 is equal to ST = S ∪ T .
Hence P1 is commutative.

The group Σ acts on P1 by conjugation, and P is the semidirect
product P1 o Σ.
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The algebra of permuted orders

If R ∈ O, then R2 = R. If R,S ∈ O, then RS = R ∪ S = SupO(R, S)
or 0, where O is ordered by inclusion.

Notation

For R ∈ O, let fR ∈ P1 defined by fR =
∑

R⊆S∈O
µO(R, S)S, where µO is

the Möbius function of the poset O.

Theorem
1 The elements fR , for R ∈ O, are orthogonal idempotents of P1, and∑

R∈O
fR = 1.

2 Moreover P1fR = kfR , for R ∈ O.

3 The algebra P1 is isomorphic to
∏

R∈O
kfR ∼= k |O|.
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The algebra of permuted orders

Notation

For R ∈ O, set ΣR = {σ ∈ Σ | σR = R}, and eR =
∑

σ∈[Σ/ΣR ]

fσR .

Theorem
1 The elements eR , for R ∈ [Σ\O], are orthogonal central idempotents

of P, and
∑

R∈[Σ\O]

eR = 1.

2 The algebra P is isomorphic to
∏

R∈[Σ\O]

PeR .

3 For R ∈ O, the algebra PeR is isomorphic to Mat|Σ:ΣR |(kΣR).
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The simple E-modules

Assume that k is a field. Recall that P = E/N , where N is nilpotent, and
that P ∼=

∏
R∈[Σ\O]

Mat|Σ:ΣR |(kΣR).

Theorem

1 The surjection E // // P induces a one to one correspondence
between the simple E-modules and the simple P-modules.

2 Let R ∈ O. Then PfR has a k-basis {∆σfR | σ ∈ Σ}, so PfR ∼=k kΣ.
It is an (R, kΣR)-bimodule, free as a right kΣR -module.

3 The simple P-modules (up to isomorphism) are the modules of the
form PfR ⊗kΣR

W , where R ∈ [Σ\O], and W is a simple
kΣR -module (up to isomorphism).

4 If char(k) = 0 or char(k) > n, then P is semisimple, and N = J(E).
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Some simple RX -modules

Proposition

Let R be an order on X . If S ∈ C(X ,X ), define a k-endomorphism βR(S)
of kΣ by

βR(S) : σ ∈ Σ 7→
{
τσ if τ ∈ Σ, ∆ ⊆ ∆τ−1S ⊆ σR
0 if no such τ.

1 The map βR(S) is well defined, and βR(S) ∈ EndkΣR
(kΣ).

2 The map S 7→ βR(S) extends to an algebra homomorphism
kC(X ,X ) = RX → EndkΣR

(kΣ), which endows kΣ with a structure
of (RX , kΣR)-bimodule.

3 If W is a simple kΣR -module, then ΛR,W = kΣ⊗kΣR
W is a simple

RX -module.

4 If (R ′,W ′) is another pair consisting of an order R ′ on X and a simple
kΣR′-module, then the RX -modules ΛR,W and ΛR′,W ′ are isomorphic
if and only if the pairs (R,W ) and (R ′,W ′) are conjugate by Σ.
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0 if no such τ.

1 The map βR(S) is well defined, and βR(S) ∈ EndkΣR
(kΣ).

2 The map S 7→ βR(S) extends to an algebra homomorphism
kC(X ,X ) = RX → EndkΣR
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Examples

Examples:

If R = ∆, then ΣR = Σ, and RX maps surjectively to kΣ, by S 7→ σ
if S = ∆σ, and S 7→ 0 is there is no such σ ∈ Σ.

If R is a total order, then ΣR = {1}, and PeR ∼= Matn!(k). In this
case kΣ becomes a simple RX -module.

Remark: Which finite groups can occur as ΣR? Answer: all! (Birkhoff
1946, Thornton 1972, Barmak-Minian 2009).
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