Representations of finite sets and correspondences

Serge Bouc

CNRS-LAMFA Université de Picardie

joint work with

Jacques Thévenaz

EPFL

ICRA 2018

∃ ▶ ∢ ∃ ▶

Serge Bouc (CNRS-LAMFA)

< 🗇 🕨 < 🖃 🕨

• Let X and Y be finite sets.

• Let X and Y be finite sets. A correspondence from X to Y

• Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X.

 Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y.

Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed:

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

 $S \circ R$

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

 $S \circ R(=SR)$

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R(=SR) = \{(z,x) \in Z \times X \mid \exists y \in Y, (z,y) \in S, (y,x) \in R\}$$

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R(=SR) = \{(z,x) \in Z \times X \mid \exists y \in Y, (z,y) \in S, (y,x) \in R\}$$

This composition is associative.

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R(=SR) = \{(z,x) \in Z \times X \mid \exists y \in Y, (z,y) \in S, (y,x) \in R\}$$

This composition is associative.

• In particular C(X, X) is a monoid

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R(=SR) = \{(z,x) \in Z \times X \mid \exists y \in Y, (z,y) \in S, (y,x) \in R\}$$

This composition is associative.

• In particular C(X, X) is a monoid, with identity element

$$\Delta_X = \{(x,x) \mid x \in X\} \subseteq X imes X$$
.

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R(=SR) = \{(z,x) \in Z \times X \mid \exists y \in Y, (z,y) \in S, (y,x) \in R\}$$

This composition is associative.

• In particular C(X, X) is a monoid, with identity element

$$\Delta_X = \{(x,x) \mid x \in X\} \subseteq X imes X$$
.

More generally

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R(=SR) = \{(z,x) \in Z \times X \mid \exists y \in Y, (z,y) \in S, (y,x) \in R\}$$

This composition is associative.

• In particular C(X, X) is a monoid, with identity element

$$\Delta_X = \{(x,x) \mid x \in X\} \subseteq X imes X$$
.

More generally

 $R\circ \Delta_X=R$ for any Y and any $R\in \mathcal{C}(Y,X)$

- Let X and Y be finite sets. A correspondence from X to Y is a subset of Y × X. Let C(Y, X) denote the set of correspondences from X to Y. A correspondence from X to X is called a relation on X.
- Correspondences can be composed: if $S \subseteq Z \times Y$ and $R \subseteq Y \times X$, then

$$S \circ R(=SR) = \{(z,x) \in Z \times X \mid \exists y \in Y, (z,y) \in S, (y,x) \in R\}$$

This composition is associative.

• In particular C(X, X) is a monoid, with identity element

$$\Delta_X = \{(x,x) \mid x \in X\} \subseteq X \times X \quad .$$

More generally

 $R \circ \Delta_X = R$ for any Y and any $R \in \mathcal{C}(Y, X)$, $\Delta_X \circ S = S$ for any Z and any $S \in \mathcal{C}(X, Z)$.

Serge Bouc (CNRS-LAMFA)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - の々で

When k is a commutative ring

< ∃ >

When k is a commutative ring, let kC be the following category:
the objects of kC are the finite sets

- the objects of kC are the finite sets,
- $Hom_{k\mathcal{C}}(X, Y) = k\mathcal{C}(Y, X)$

- the objects of kC are the finite sets,
- $Hom_{k\mathcal{C}}(X, Y) = k\mathcal{C}(Y, X)$ (free k-module with basis $\mathcal{C}(Y, X)$)

- the objects of kC are the finite sets,
- $Hom_{k\mathcal{C}}(X,Y) = k\mathcal{C}(Y,X),$
- composition of morphisms extends composition of correspondences

• the objects of kC are the finite sets,

•
$$Hom_{k\mathcal{C}}(X,Y) = k\mathcal{C}(Y,X),$$

- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_X \in k\mathcal{C}(X, X)$.

• the objects of kC are the finite sets,

•
$$Hom_{k\mathcal{C}}(X,Y) = k\mathcal{C}(Y,X),$$

- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_X \in k\mathcal{C}(X, X)$.

A correspondence functor (over k) is a representation of kC over k

- the objects of kC are the finite sets,
- $Hom_{k\mathcal{C}}(X, Y) = k\mathcal{C}(Y, X)$,
- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_X \in k\mathcal{C}(X, X)$.

A correspondence functor (over k) is a representation of kC over k, i.e. a k-linear functor from kC to k-Mod.

• the objects of kC are the finite sets,

•
$$Hom_{k\mathcal{C}}(X,Y) = k\mathcal{C}(Y,X),$$

- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_X \in k\mathcal{C}(X, X)$.

A correspondence functor (over k) is a representation of kC over k, i.e. a k-linear functor from kC to k-Mod. Let \mathcal{F}_k denote the category of correspondence functors over k.

• the objects of kC are the finite sets,

•
$$Hom_{k\mathcal{C}}(X,Y) = k\mathcal{C}(Y,X),$$

- composition of morphisms extends composition of correspondences,
- the identity morphism of X is $\Delta_X \in k\mathcal{C}(X, X)$.

A correspondence functor (over k) is a representation of kC over k, i.e. a k-linear functor from kC to k-Mod. Let \mathcal{F}_k denote the category of correspondence functors over k. It is an abelian category.

Serge Bouc (CNRS-LAMFA)

< 🗇 🕨 < 🖃 🕨

Let \mathcal{D} be an essentially small *k*-linear category

Serge Bouc (CNRS-LAMFA)

Let \mathcal{D} be a *k*-linear category

Serge Bouc (CNRS-LAMFA)

Let \mathcal{D} be a k-linear category, and \mathcal{F}_k the category of k-linear representations of \mathcal{D} .

Let \mathcal{D} be a *k*-linear category, and \mathcal{F}_k the category of *k*-linear representations of \mathcal{D} . Let moreover X be an object of \mathcal{D} .

Let \mathcal{D} be a *k*-linear category, and \mathcal{F}_k the category of *k*-linear representations of \mathcal{D} . Let moreover X be an object of \mathcal{D} . Then:
Representations of categories

Let \mathcal{D} be a *k*-linear category, and \mathcal{F}_k the category of *k*-linear representations of \mathcal{D} . Let moreover X be an object of \mathcal{D} . Then:

• $End_{\mathcal{D}}(X)$ is a *k*-algebra.

Representations of categories

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module $\forall \varphi \in End_{\mathcal{D}}(X), \ \forall m \in F(x), \ \varphi m := F(\varphi)(m).$

Representations of categories

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor $F \mapsto F(X)$

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor $F \mapsto F(X) : \mathcal{F}_k \to End_{\mathcal{D}}(X)$ -Mod

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor $F \mapsto F(X) : \mathcal{F}_k \to End_{\mathcal{D}}(X)$ -Mod has a left adjoint $V \mapsto L_{X,V}$

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor F → F(X): F_k → End_D(X)-Mod has a left adjoint V → L_{X,V} such that for Y ∈ D

$$L_{X,V}(Y) = \mathcal{D}(Y,X) \otimes_{\mathit{End}_{\mathcal{D}}(X)} V,$$

- $End_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor $F \mapsto F(X) : \mathcal{F}_k \to End_{\mathcal{D}}(X)$ -Mod has a left adjoint $V \mapsto L_{X,V}$ such that for $Y \in \mathcal{D}$

$$L_{X,V}(Y) = \mathcal{D}(Y,X) \otimes_{End_{\mathcal{D}}(X)} V,$$

and for $\psi \in \mathcal{D}(Z, Y)$

- $End_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor $F \mapsto F(X) : \mathcal{F}_k \to End_{\mathcal{D}}(X)$ -Mod has a left adjoint $V \mapsto L_{X,V}$ such that for $Y \in \mathcal{D}$

$$L_{X,V}(Y) = \mathcal{D}(Y,X) \otimes_{End_{\mathcal{D}}(X)} V,$$

and for $\psi \in \mathcal{D}(Z,Y)$, $\varphi \in \mathcal{D}(Y,X)$

- $End_{\mathcal{D}}(X)$ is a k-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor $F \mapsto F(X) : \mathcal{F}_k \to End_{\mathcal{D}}(X)$ -Mod has a left adjoint $V \mapsto L_{X,V}$ such that for $Y \in \mathcal{D}$

$$L_{X,V}(Y) = \mathcal{D}(Y,X) \otimes_{End_{\mathcal{D}}(X)} V$$

and for $\psi \in \mathcal{D}(Z,Y), \ \varphi \in \mathcal{D}(Y,X), \ v \in V$

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor $F \mapsto F(X) : \mathcal{F}_k \to End_{\mathcal{D}}(X)$ -Mod has a left adjoint $V \mapsto L_{X,V}$ such that for $Y \in \mathcal{D}$

and for $\psi \in \mathcal{D}(Z, Y)$, $\varphi \in \mathcal{D}(Y, X) \otimes_{End_{\mathcal{D}}(X)} V$, $L_{X,V}(\psi)(\varphi \otimes v) = (\psi \circ \varphi) \otimes v$.

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor $F \mapsto F(X) : \mathcal{F}_k \to End_{\mathcal{D}}(X)$ -Mod has a left adjoint $V \mapsto L_{X,V}$ such that for $Y \in \mathcal{D}$

$$L_{X,V}(Y) = \mathcal{D}(Y,X) \otimes_{\mathit{End}_{\mathcal{D}}(X)} V,$$

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor F → F(X): F_k → End_D(X)-Mod has a left adjoint V → L_{X,V} such that for Y ∈ D
 L_{X,V}(Y) = D(Y,X) ⊗_{End_D(X)} V,
- When *V* is simple

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor F → F(X): F_k → End_D(X)-Mod has a left adjoint V → L_{X,V} such that for Y ∈ D
 L_{X,V}(Y) = D(Y,X) ⊗_{End_D(X)} V,
- When V is simple, the functor $L_{X,V}$ has a unique maximal (proper) subfunctor $J_{X,V}$

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor F → F(X): F_k → End_D(X)-Mod has a left adjoint V → L_{X,V} such that for Y ∈ D
 L_{X,V}(Y) = D(Y,X) ⊗_{End_D(X)} V,
- When V is simple, the functor L_{X,V} has a unique maximal (proper) subfunctor J_{X,V}, defined by J_{X,V}(Y) =

- 4 3 6 4 3 6

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor F → F(X): F_k → End_D(X)-Mod has a left adjoint V → L_{X,V} such that for Y ∈ D
 L_{X,V}(Y) = D(Y,X) ⊗_{End_D(X)} V,
- When V is simple, the functor $L_{X,V}$ has a unique maximal (proper) subfunctor $J_{X,V}$, defined by $J_{X,V}(Y) = \{\sum_{i} \varphi_i \otimes v_i \mid$

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor F → F(X): F_k → End_D(X)-Mod has a left adjoint V → L_{X,V} such that for Y ∈ D
 L_{X,V}(Y) = D(Y,X) ⊗_{End_D(X)} V,
- When V is simple, the functor L_{X,V} has a unique maximal (proper) subfunctor J_{X,V}, defined by J_{X,V}(Y) = {∑_i φ_i ⊗ v_i | ∀θ ∈ D(X, Y)

· · · · · · · · ·

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor F → F(X): F_k → End_D(X)-Mod has a left adjoint V → L_{X,V} such that for Y ∈ D
 L_{X,V}(Y) = D(Y,X) ⊗_{End_D(X)} V,
- When V is simple, the functor $L_{X,V}$ has a unique maximal (proper) subfunctor $J_{X,V}$, defined by $J_{X,V}(Y) = \{\sum_{i} \varphi_i \otimes v_i \mid \forall \theta \in \mathcal{D}(X,Y), \sum_{i} (\theta \varphi_i) v_i = 0\}.$

伺下 イヨト イヨト

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor F → F(X): F_k → End_D(X)-Mod has a left adjoint V → L_{X,V} such that for Y ∈ D
 L_{X,V}(Y) = D(Y,X) ⊗_{End_D(X)} V,
- When V is simple, the functor $L_{X,V}$ has a unique maximal (proper) subfunctor $J_{X,V}$,

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor F → F(X): F_k → End_D(X)-Mod has a left adjoint V → L_{X,V} such that for Y ∈ D
 L_{X,V}(Y) = D(Y,X) ⊗_{End_D(X)} V,
- When V is simple, the functor $L_{X,V}$ has a unique maximal (proper) subfunctor $J_{X,V}$, and the quotient $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple object of \mathcal{F}_k .

• • = • • = •

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor F → F(X): F_k → End_D(X)-Mod has a left adjoint V → L_{X,V} such that for Y ∈ D
 L_{X,V}(Y) = D(Y,X) ⊗_{End_D(X)} V,
- When V is simple, the functor $L_{X,V}$ has a unique maximal (proper) subfunctor $J_{X,V}$, and the quotient $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple object of \mathcal{F}_k . Moreover $S_{X,V}(X) \cong V$.

伺下 イヨト イヨト

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor F → F(X): F_k → End_D(X)-Mod has a left adjoint V → L_{X,V} such that for Y ∈ D
 L_{X,V}(Y) = D(Y,X) ⊗_{End_D(X)} V,
- When V is simple, the functor $L_{X,V}$ has a unique maximal (proper) subfunctor $J_{X,V}$, and the quotient $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple object of \mathcal{F}_k . Moreover $S_{X,V}(X) \cong V$.
- Conversely, if S is a simple representation of $\mathcal D$ over k

・ 何 ト ・ ヨ ト ・ ヨ ト

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor F → F(X): F_k → End_D(X)-Mod has a left adjoint V → L_{X,V} such that for Y ∈ D
 L_{X,V}(Y) = D(Y,X) ⊗_{End_D(X)} V,
- When V is simple, the functor $L_{X,V}$ has a unique maximal (proper) subfunctor $J_{X,V}$, and the quotient $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple object of \mathcal{F}_k . Moreover $S_{X,V}(X) \cong V$.
- Conversely, if S is a simple representation of $\mathcal D$ over k, and if $S(X) \neq 0$

(本部)と 本語 と 本語を

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor F → F(X): F_k → End_D(X)-Mod has a left adjoint V → L_{X,V} such that for Y ∈ D
 L_{X,V}(Y) = D(Y,X) ⊗_{End_D(X)} V,
- When V is simple, the functor $L_{X,V}$ has a unique maximal (proper) subfunctor $J_{X,V}$, and the quotient $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple object of \mathcal{F}_k . Moreover $S_{X,V}(X) \cong V$.
- Conversely, if S is a simple representation of \mathcal{D} over k, and if $S(X) \neq 0$, then V = S(X) is a simple $End_{\mathcal{D}}(X)$ -module

- $End_{\mathcal{D}}(X)$ is a *k*-algebra.
- For $F \in \mathcal{F}_k$, the evaluation F(X) is an $End_{\mathcal{D}}(X)$ -module.
- The evaluation functor F → F(X): F_k → End_D(X)-Mod has a left adjoint V → L_{X,V} such that for Y ∈ D
 L_{X,V}(Y) = D(Y,X) ⊗_{End_D(X)} V,
- When V is simple, the functor $L_{X,V}$ has a unique maximal (proper) subfunctor $J_{X,V}$, and the quotient $S_{X,V} = L_{X,V}/J_{X,V}$ is a simple object of \mathcal{F}_k . Moreover $S_{X,V}(X) \cong V$.
- Conversely, if S is a simple representation of \mathcal{D} over k, and if $S(X) \neq 0$, then V = S(X) is a simple $End_{\mathcal{D}}(X)$ -module, and $S \cong S_{X,V}$.

-

・ロト ・ 日 ・ ・ ヨ ・ ・

For a finite set, the algebra $End_{k\mathcal{C}}(X) = k\mathcal{C}(X, X)$

For a finite set, the algebra $End_{k\mathcal{C}}(X) = k\mathcal{C}(X, X)$ is called the algebra of relations on X.

For a finite set, the algebra $End_{k\mathcal{C}}(X) = k\mathcal{C}(X, X)$ is called the algebra of relations on X.

• A relation $R \in C(X, X)$ is called inessential

For a finite set, the algebra $End_{k\mathcal{C}}(X) = k\mathcal{C}(X, X)$ is called the algebra of relations on X.

• A relation $R \in \mathcal{C}(X, X)$ is called inessential if there exists Y with |Y| < |X|

For a finite set, the algebra $End_{k\mathcal{C}}(X) = k\mathcal{C}(X, X)$ is called the algebra of relations on X.

• A relation $R \in C(X, X)$ is called inessential if there exists Y with |Y| < |X|, and correspondences $S \in C(X, Y)$ and $T \in C(Y, X)$

For a finite set, the algebra $End_{k\mathcal{C}}(X) = k\mathcal{C}(X, X)$ is called the algebra of relations on X.

• A relation $R \in C(X, X)$ is called inessential if there exists Y with |Y| < |X|, and correspondences $S \in C(X, Y)$ and $T \in C(Y, X)$ such that $R = S \circ T$

For a finite set, the algebra $End_{k\mathcal{C}}(X) = k\mathcal{C}(X, X)$ is called the algebra of relations on X.

• A relation $R \in C(X, X)$ is called inessential if there exists Y with |Y| < |X|, and correspondences $S \in C(X, Y)$ and $T \in C(Y, X)$ such that $R = S \circ T$, i.e. $X \xrightarrow{R} X$

Essential relations

For a finite set, the algebra $End_{k\mathcal{C}}(X) = k\mathcal{C}(X, X)$ is called the algebra of relations on X.

- A relation $R \in C(X, X)$ is called inessential if there exists Y with |Y| < |X|, and correspondences $S \in C(X, Y)$ and $T \in C(Y, X)$ such that $R = S \circ T$, i.e. $X \xrightarrow{R} X$
- A relation $R \in \mathcal{C}(X, X)$ is called essential

Essential relations

For a finite set, the algebra $End_{k\mathcal{C}}(X) = k\mathcal{C}(X, X)$ is called the algebra of relations on X.

- A relation $R \in C(X, X)$ is called inessential if there exists Y with |Y| < |X|, and correspondences $S \in C(X, Y)$ and $T \in C(Y, X)$ such that $R = S \circ T$, i.e. $X \xrightarrow{R} X$
- A relation $R \in C(X, X)$ is called essential if it is not inessential.
- A relation $R \in C(X, X)$ is called inessential if there exists Y with |Y| < |X|, and correspondences $S \in C(X, Y)$ and $T \in C(Y, X)$ such that $R = S \circ T$, i.e. $X \xrightarrow{R} X$
- A relation $R \in C(X, X)$ is called essential if it is not inessential.
- **Example:** Suppose $|X| \ge 2$, and $R = U \times V$, for $U, V \subseteq X$.

- A relation $R \in C(X, X)$ is called inessential if there exists Y with |Y| < |X|, and correspondences $S \in C(X, Y)$ and $T \in C(Y, X)$ such that $R = S \circ T$, i.e. $X \xrightarrow{R} X$
- A relation $R \in C(X, X)$ is called essential if it is not inessential.
- **Example:** Suppose $|X| \ge 2$, and $R = U \times V$, for $U, V \subseteq X$. Then $Y = \{y\}$, $S = U \times \{y\}$, and $T = \{y\} \times V$.

- A relation $R \in C(X, X)$ is called inessential if there exists Y with |Y| < |X|, and correspondences $S \in C(X, Y)$ and $T \in C(Y, X)$ such that $R = S \circ T$, i.e. $X \xrightarrow{R} X$
- A relation $R \in C(X, X)$ is called essential if it is not inessential.
- **Example:** Suppose $|X| \ge 2$, and $R = U \times V$, for $U, V \subseteq X$. Then $Y = \{y\}, S = U \times \{y\}$, and $T = \{y\} \times V$. Then $R = S \circ T$ is inessential.

- A relation $R \in C(X, X)$ is called inessential if there exists Y with |Y| < |X|, and correspondences $S \in C(X, Y)$ and $T \in C(Y, X)$ such that $R = S \circ T$, i.e. $X \xrightarrow{R} X$
- A relation $R \in C(X, X)$ is called essential if it is not inessential.
- **Example:** Suppose $|X| \ge 2$, and $R = U \times V$, for $U, V \subseteq X$. Then $Y = \{y\}$, $S = U \times \{y\}$, and $T = \{y\} \times V$. Then $R = S \circ T$ is inessential.
- Let *I_X* ⊆ *R_X* = kC(X, X) denote the set of linear combinations of inessential relations on X.

- A relation $R \in C(X, X)$ is called inessential if there exists Y with |Y| < |X|, and correspondences $S \in C(X, Y)$ and $T \in C(Y, X)$ such that $R = S \circ T$, i.e. $X \xrightarrow{R} X$
- A relation $R \in C(X, X)$ is called essential if it is not inessential.
- **Example:** Suppose $|X| \ge 2$, and $R = U \times V$, for $U, V \subseteq X$. Then $Y = \{y\}, S = U \times \{y\}$, and $T = \{y\} \times V$. Then $R = S \circ T$ is inessential.
- Let *I_X* ⊆ *R_X* = k*C*(*X*, *X*) denote the set of linear combinations of inessential relations on *X*. Then *I_X* is a two sided ideal of *R_X*

For a finite set, the algebra $End_{k\mathcal{C}}(X) = k\mathcal{C}(X, X)$ is called the algebra of relations on X.

- A relation $R \in C(X, X)$ is called inessential if there exists Y with |Y| < |X|, and correspondences $S \in C(X, Y)$ and $T \in C(Y, X)$ such that $R = S \circ T$, i.e. $X \xrightarrow{R} X$
- A relation $R \in C(X, X)$ is called essential if it is not inessential.
- **Example:** Suppose $|X| \ge 2$, and $R = U \times V$, for $U, V \subseteq X$. Then $Y = \{y\}, S = U \times \{y\}$, and $T = \{y\} \times V$. Then $R = S \circ T$ is inessential.
- Let *I_X* ⊆ *R_X* = k*C*(*X*, *X*) denote the set of linear combinations of inessential relations on *X*. Then *I_X* is a two sided ideal of *R_X*, and the quotient *E_X* = *R_X*/*I_X* is called the algebra of essential relations on *X*.

くほと くほと くほと

Serge Bouc (CNRS-LAMFA)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - の々で

• From now on, the set X is fixed (and understood).

• From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$

< 一型

.∃ >

• From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...

ICRA 2018 6 / 14

<hr/>

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra \mathcal{E} has a k-basis consisting of the essential relations on X.

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.
- **Example:** Let $X = \{1, 2\}$.

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.
- Example: Let $X = \{1, 2\}$. If R = 1

Serge Bouc (CNRS-LAMFA)

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.
- Example: Let $X = \{1, 2\}$. If R = 1 $\xrightarrow{1}_{2}$ 1, then $R^2 = 1$ $\xrightarrow{1}_{2}$ $\xrightarrow{1}_{2}$

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.
- Example: Let $X = \{1, 2\}$. If R = 1 $\xrightarrow{1}_{2}$ 1, then $R^2 = 1$ $\xrightarrow{1}_{2}$ $\xrightarrow{1}_{2}$ $X \times X = 0$.

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.
- Classical definitions:

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}.$

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}.$
 - *R* is reflexive

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}.$
 - *R* is reflexive $\iff \Delta \subseteq R$.

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}.$
 - *R* is reflexive $\iff \Delta \subseteq R$.
 - *R* is transitive

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}.$
 - *R* is reflexive $\iff \Delta \subseteq R$.
 - *R* is transitive $\iff R^2 \subseteq R$.

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}.$
 - *R* is reflexive $\iff \Delta \subseteq R$.
 - *R* is transitive $\iff R^2 \subseteq R$.
 - *R* is a preorder

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}.$
 - *R* is reflexive $\iff \Delta \subseteq R$.
 - R is transitive $\iff R^2 \subseteq R$.
 - *R* is a preorder $\iff \Delta \subseteq R = R^2$.

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}.$
 - *R* is reflexive $\iff \Delta \subseteq R$.
 - *R* is transitive $\iff R^2 \subseteq R$.
 - *R* is a preorder $\iff \Delta \subseteq R = R^2$.
 - *R* is symmetric

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}.$
 - *R* is reflexive $\iff \Delta \subseteq R$.
 - *R* is transitive $\iff R^2 \subseteq R$.
 - *R* is a preorder $\iff \Delta \subseteq R = R^2$.
 - R is symmetric $\iff R = R^{^{\mathrm{op}}}$.

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}.$
 - *R* is reflexive $\iff \Delta \subseteq R$.
 - *R* is transitive $\iff R^2 \subseteq R$.
 - *R* is a preorder $\iff \Delta \subseteq R = R^2$.
 - R is symmetric $\iff R = R^{^{\mathrm{op}}}$.
 - *R* is an equivalence relation

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}.$
 - *R* is reflexive $\iff \Delta \subseteq R$.
 - R is transitive $\iff R^2 \subseteq R$.
 - *R* is a preorder $\iff \Delta \subseteq R = R^2$.
 - R is symmetric $\iff R = R^{^{\mathrm{op}}}$.
 - *R* is an equivalence relation $\iff \Delta \subseteq R = R^{op} = R^2$.

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}.$
 - *R* is reflexive $\iff \Delta \subseteq R$.
 - *R* is transitive $\iff R^2 \subseteq R$.
 - *R* is a preorder $\iff \Delta \subseteq R = R^2$.
 - R is symmetric $\iff R = R^{^{\mathrm{op}}}$.
 - *R* is an equivalence relation $\iff \Delta \subseteq R = R^{op} = R^2$.
 - R is antisymmetric

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}.$
 - *R* is reflexive $\iff \Delta \subseteq R$.
 - *R* is transitive $\iff R^2 \subseteq R$.
 - *R* is a preorder $\iff \Delta \subseteq R = R^2$.
 - R is symmetric $\iff R = R^{^{\mathrm{op}}}$.
 - *R* is an equivalence relation $\iff \Delta \subseteq R = R^{op} = R^2$.
 - R is antisymmetric $\iff R \cap R^{^{\mathrm{op}}} \subseteq \Delta$.

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}.$
 - *R* is reflexive $\iff \Delta \subseteq R$.
 - R is transitive $\iff R^2 \subseteq R$.
 - *R* is a preorder $\iff \Delta \subseteq R = R^2$.
 - R is symmetric $\iff R = R^{^{\mathrm{op}}}$.
 - *R* is an equivalence relation $\iff \Delta \subseteq R = R^{op} = R^2$.
 - *R* is antisymmetric $\iff R \cap R^{^{\mathrm{op}}} \subseteq \Delta$.
 - *R* is an order

- From now on, the set X is fixed (and understood). Set n = |X|, $\mathcal{E} = \mathcal{E}_X$, $\Delta = \Delta_X$,...
- The algebra *E* has a *k*-basis consisting of the essential relations on *X*. In *E*, the product of two essential relations *R* and *S* is equal to *R* ∘ *S* if *R* ∘ *S* is essential, and to 0 otherwise.
- Classical definitions: if R is a relation, set $R^{op} = \{(x, y) \mid (y, x) \in R\}.$
 - *R* is reflexive $\iff \Delta \subseteq R$.
 - *R* is transitive $\iff R^2 \subseteq R$.
 - *R* is a preorder $\iff \Delta \subseteq R = R^2$.
 - R is symmetric $\iff R = R^{^{\mathrm{op}}}$.
 - *R* is an equivalence relation $\iff \Delta \subseteq R = R^{op} = R^2$.
 - *R* is antisymmetric $\iff R \cap R^{^{\mathrm{op}}} \subseteq \overline{\Delta}$.
 - *R* is an order $\iff R = R^2$ and $R \cap R^{^{\mathrm{op}}} = \Delta$.

Serge Bouc (CNRS-LAMFA)

▲ 注 ▶ 注 少 Q ペ ICRA 2018 7 / 14

イロト イヨト イヨト イ

Characterization

Recall that X is a finite set of cardinality n.

Characterization

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential

Characterization

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \le i \le n-1$
Recall that X is a finite set of cardinality n.

Lemma

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \le i \le n-1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

• If R is a preorder, and not an order

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \le i \le n-1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

• If R is a preorder, and not an order, then R is inessential.

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \le i \le n-1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If *R* is an order

Serge Bouc (CNRS-LAMFA)

Recall that X is a finite set of cardinality n.

Lemma

- If R is a preorder, and not an order, then R is inessential.
- If *R* is an order, and if $\Delta \subseteq Q \subseteq R$

Recall that X is a finite set of cardinality n.

Lemma

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.

Recall that X is a finite set of cardinality n.

Lemma

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X.

Recall that X is a finite set of cardinality n.

Lemma

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X. Then $\sigma \in \Sigma \mapsto$

Recall that X is a finite set of cardinality n.

Lemma

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_{\sigma} = \{ (\sigma(x), x) \mid x \in X \} \in \mathcal{C}(X, X)$

Recall that X is a finite set of cardinality n.

Lemma

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_{\sigma} = \{ (\sigma(x), x) \mid x \in X \} \in \mathcal{C}(X, X) \text{ is a monoid}$ homomorphism.

Recall that X is a finite set of cardinality n.

Lemma

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X. Then $\sigma \in \Sigma \mapsto \Delta_{\sigma} = \{(\sigma(x), x) \mid x \in X\} \in \mathcal{C}(X, X) \text{ is a monoid}$ homomorphism. Moreover Δ_{σ} is essential.

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \le i \le n-1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X. Then
 σ ∈ Σ ↦ Δ_σ = { (σ(x), x) | x ∈ X } ∈ C(X, X) is a monoid
 homomorphism. Moreover Δ_σ is essential.

Theorem

Let R be an essential relation on X.

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \le i \le n-1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X. Then
 σ ∈ Σ ↦ Δ_σ = {(σ(x), x) | x ∈ X} ∈ C(X, X) is a monoid
 homomorphism. Moreover Δ_σ is essential.

Theorem

Let R be an essential relation on X. Then there exists $\sigma \in \Sigma$ such that $R \supseteq \Delta_{\sigma}$

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \le i \le n-1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X. Then
 σ ∈ Σ ↦ Δ_σ = {(σ(x), x) | x ∈ X} ∈ C(X, X) is a monoid
 homomorphism. Moreover Δ_σ is essential.

Theorem

Let R be an essential relation on X. Then there exists $\sigma \in \Sigma$ such that $R \supseteq \Delta_{\sigma}$, i.e. $R = S\Delta_{\sigma}$, where S is reflexive.

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \le i \le n-1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X. Then
 σ ∈ Σ ↦ Δ_σ = {(σ(x), x) | x ∈ X} ∈ C(X, X) is a monoid
 homomorphism. Moreover Δ_σ is essential.

Theorem

Let R be an essential relation on X. Then there exists $\sigma \in \Sigma$ such that $R \supseteq \Delta_{\sigma}$, i.e. $R = S\Delta_{\sigma}$, where S is reflexive.

Proof:

Serge Bouc (CNRS-LAMFA)

• • • • • • • • • • • • •

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \le i \le n-1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X. Then
 σ ∈ Σ ↦ Δ_σ = {(σ(x), x) | x ∈ X} ∈ C(X, X) is a monoid
 homomorphism. Moreover Δ_σ is essential.

Theorem

Let R be an essential relation on X. Then there exists $\sigma \in \Sigma$ such that $R \supseteq \Delta_{\sigma}$, i.e. $R = S\Delta_{\sigma}$, where S is reflexive.

Proof: One direct proof

Serge Bouc (CNRS-LAMFA)

Recall that X is a finite set of cardinality n.

Lemma

A relation R on X is inessential $\iff \exists U_i, V_i \subseteq X, 1 \le i \le n-1$ such that $R = \bigcup_{i=1}^{n-1} (U_i \times V_i)$.

- If R is a preorder, and not an order, then R is inessential.
- If R is an order, and if $\Delta \subseteq Q \subseteq R$, then Q is essential.
- Let Σ be the group of permutations of X. Then
 σ ∈ Σ ↦ Δ_σ = {(σ(x), x) | x ∈ X} ∈ C(X, X) is a monoid
 homomorphism. Moreover Δ_σ is essential.

Theorem

Let R be an essential relation on X. Then there exists $\sigma \in \Sigma$ such that $R \supseteq \Delta_{\sigma}$, i.e. $R = S\Delta_{\sigma}$, where S is reflexive.

Proof: One direct proof, another one using a theorem of P. Hall (1935).

Serge Bouc (CNRS-LAMFA)

Serge Bouc (CNRS-LAMFA)

・ロト ・ 日 ト ・ 日 ト ・

• If S is reflexive

Serge Bouc (CNRS-LAMFA)

• If S is reflexive, then $\Delta \subseteq S$

• If S is reflexive, then $\Delta \subseteq S \subseteq S^2$

• If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m$

• If S is reflexive, then $\Delta \subseteq S \subseteq S^2 \subseteq \ldots \subseteq S^m = S^{m+1}$.

If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S.

If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.

- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:

- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order.

- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E} .

- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E} .
 - or \overline{S} is an order.

- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E} .
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E} .
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E} .
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let ${\cal N}$ be the k-submodule of ${\cal E}$ generated by the elements of the form $(S-\overline{S})\Delta_\sigma$

- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E} .
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S - \overline{S})\Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.

- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E} .
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S - \overline{S})\Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.

Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E} .

- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E} .
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S - \overline{S})\Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.

Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E} .

Proof (sketch): Let $S \supseteq \Delta$

- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E} .
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S - \overline{S})\Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$.

Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E} .

Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N} - \{0\}$ such that $S^m = \overline{S}$.
- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E} .
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S - \overline{S})\Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$. Then \mathcal{N} is a two sided nilestant ideal of \mathcal{S} .

Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E} .

• Let
$$Q \supseteq \Delta$$
.

- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E} .
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S - \overline{S})\Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$. Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E} .

• Let
$$Q \supseteq \Delta$$
. Then $Q(S - \overline{S}) = QS - Q\overline{S} =$

- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E} .
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S - \overline{S})\Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$. Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E} .

Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N} - \{0\}$ such that $S^m = \overline{S}$.

• Let $Q \supseteq \Delta$. Then $Q(S - \overline{S}) = QS - Q\overline{S} = (QS - \overline{QS}) - (Q\overline{S} - \overline{Q\overline{S}})$ since $\overline{QS} = \overline{Q\overline{S}}$.

- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E} .
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S - \overline{S})\Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$. Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E} .

Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N} - \{0\}$ such that $S^m = \overline{S}$.

• Let $Q \supseteq \Delta$. Then $Q(S - \overline{S}) = QS - Q\overline{S} = (QS - \overline{QS}) - (Q\overline{S} - \overline{Q\overline{S}})$ since $\overline{QS} = \overline{Q\overline{S}}$. Hence $Q\mathcal{N} \subseteq \mathcal{N}$.

- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E} .
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S - \overline{S})\Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$. Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E} .

Proof (sketch): Let $S \supseteq \Delta$, and $m \in \mathbb{N} - \{0\}$ such that $S^m = \overline{S}$.

- Let $Q \supseteq \Delta$. Then $Q(S \overline{S}) = QS Q\overline{S} = (QS \overline{QS}) (Q\overline{S} \overline{Q\overline{S}})$ since $\overline{QS} = \overline{Q\overline{S}}$. Hence $Q\mathcal{N} \subseteq \mathcal{N}$.
- $(S-\overline{S})^m =$

くほと くほと くほと

- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E} .
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S - \overline{S})\Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$. Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E} .

- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E} .
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S - \overline{S})\Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$. Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E} .

- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E} .
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S - \overline{S})\Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$. Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E} .

- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E} .
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S - \overline{S})\Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$. Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E} .

• Let
$$Q \supseteq \Delta$$
. Then $Q(S - \overline{S}) = QS - Q\overline{S} = (QS - \overline{QS}) - (Q\overline{S} - \overline{Q\overline{S}})$
since $\overline{QS} = \overline{Q\overline{S}}$. Hence $Q\mathcal{N} \subseteq \mathcal{N}$.
• $(S - \overline{S})^m = \sum_{i=0}^m (-1)^i {m \choose i} S^{m-i} \overline{S}^i = \left(\sum_{i=0}^m (-1)^i {m \choose i}\right) \overline{S} = 0$.

- If S is reflexive, then Δ ⊆ S ⊆ S² ⊆ ... ⊆ S^m = S^{m+1}. This limit is the transitive closure of S, denoted by S. It is a preorder.
- There are two cases:
 - either \overline{S} is not an order. Then $\overline{S} = 0$ in \mathcal{E} .
 - or \overline{S} is an order. Then $\Delta \subseteq S \subseteq \overline{S} \implies S$ is essential.

Proposition

Let \mathcal{N} be the k-submodule of \mathcal{E} generated by the elements of the form $(S - \overline{S})\Delta_{\sigma}$, for $\Delta \subseteq S$ and $\sigma \in \Sigma$. Then \mathcal{N} is a two sided nilpotent ideal of \mathcal{E} .

• Let
$$Q \supseteq \Delta$$
. Then $Q(S - \overline{S}) = QS - Q\overline{S} = (QS - \overline{QS}) - (Q\overline{S} - \overline{Q\overline{S}})$
since $\overline{QS} = \overline{Q\overline{S}}$. Hence $Q\mathcal{N} \subseteq \mathcal{N}$.
• $(S - \overline{S})^m = \sum_{i=0}^m (-1)^i {m \choose i} S^{m-i} \overline{S}^i = \left(\sum_{i=0}^m (-1)^i {m \choose i}\right) \overline{S} = 0$.

Serge Bouc (CNRS-LAMFA)

э

・ロト ・ 日 ト ・ 田 ト ・

• Let
$$\mathcal{P} = \mathcal{E}/\mathcal{N}$$

э

・ロト ・ 日 ト ・ 田 ト ・

Serge Bouc (CNRS-LAMFA)

• Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X.

• Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_{\sigma}$

Let P = E/N, called the algebra of permuted orders on X. It has a k-basis consisting of relations SΔ_σ, where S is an order and σ ∈ Σ.

• Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. ($S\Delta_{\sigma} = \overline{S}\Delta_{\sigma}$ in \mathcal{P} , and $\overline{S} = 0$ if \overline{S} is not an order)

• Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_{\sigma}.T\Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S.^{\sigma}T}\Delta_{\sigma\tau}$

• Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_{\sigma}.T\Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S.^{\sigma}T}\Delta_{\sigma\tau}$ if $\overline{S.^{\sigma}T}$ is an order

• Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_{\sigma}.T\Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S.^{\sigma}T}\Delta_{\sigma\tau}$ if $\overline{S.^{\sigma}T}$ is an order, and to 0 otherwise

• Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_{\sigma}.T\Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S.^{\sigma}T}\Delta_{\sigma\tau}$ if $\overline{S.^{\sigma}T}$ is an order, and to 0 otherwise, where ${}^{\sigma}T = \Delta_{\sigma}T\Delta_{\sigma^{-1}}$.

- Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_{\sigma}.T\Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S.^{\sigma}T}\Delta_{\sigma\tau}$ if $\overline{S.^{\sigma}T}$ is an order, and to 0 otherwise, where ${}^{\sigma}T = \Delta_{\sigma}T\Delta_{\sigma^{-1}}$.
- The algebra \mathcal{P} is Σ -graded:

- Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_{\sigma}.T\Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S.^{\sigma}T}\Delta_{\sigma\tau}$ if $\overline{S.^{\sigma}T}$ is an order, and to 0 otherwise, where ${}^{\sigma}T = \Delta_{\sigma}T\Delta_{\sigma^{-1}}$.
- The algebra \mathcal{P} is Σ -graded: for $\sigma \in \Sigma$

- Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_{\sigma}.T\Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S.^{\sigma}T}\Delta_{\sigma\tau}$ if $\overline{S.^{\sigma}T}$ is an order, and to 0 otherwise, where ${}^{\sigma}T = \Delta_{\sigma}T\Delta_{\sigma^{-1}}$.
- The algebra *P* is Σ-graded: for *σ* ∈ Σ, the degree *σ* part *P_σ* of *P* is the *k*-submodule generated by the elements *S*Δ_{*σ*}, where *S* is an order.

- Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_{\sigma}.T\Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S.^{\sigma}T}\Delta_{\sigma\tau}$ if $\overline{S.^{\sigma}T}$ is an order, and to 0 otherwise, where ${}^{\sigma}T = \Delta_{\sigma}T\Delta_{\sigma^{-1}}$.
- The algebra *P* is Σ-graded: for *σ* ∈ Σ, the degree *σ* part *P_σ* of *P* is the *k*-submodule generated by the elements *S*Δ_{*σ*}, where *S* is an order.
- The subalgebra \mathcal{P}_1 has a *k*-basis consisting of the set \mathcal{O} of orders on *X*.

- Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_{\sigma}.T\Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S.^{\sigma}T}\Delta_{\sigma\tau}$ if $\overline{S.^{\sigma}T}$ is an order, and to 0 otherwise, where ${}^{\sigma}T = \Delta_{\sigma}T\Delta_{\sigma^{-1}}$.
- The algebra *P* is Σ-graded: for *σ* ∈ Σ, the degree *σ* part *P_σ* of *P* is the *k*-submodule generated by the elements *S*Δ_{*σ*}, where *S* is an order.
- The subalgebra P₁ has a k-basis consisting of the set O of orders on X. For S, T ∈ O, the product ST in P₁

- Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_{\sigma}.T\Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S.^{\sigma}T}\Delta_{\sigma\tau}$ if $\overline{S.^{\sigma}T}$ is an order, and to 0 otherwise, where ${}^{\sigma}T = \Delta_{\sigma}T\Delta_{\sigma^{-1}}$.
- The algebra *P* is Σ-graded: for *σ* ∈ Σ, the degree *σ* part *P_σ* of *P* is the *k*-submodule generated by the elements *S*Δ_{*σ*}, where *S* is an order.
- The subalgebra P₁ has a k-basis consisting of the set O of orders on X. For S, T ∈ O, the product ST in P₁ is equal to ST = S∪T.

- Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_{\sigma}.T\Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S.^{\sigma}T}\Delta_{\sigma\tau}$ if $\overline{S.^{\sigma}T}$ is an order, and to 0 otherwise, where ${}^{\sigma}T = \Delta_{\sigma}T\Delta_{\sigma^{-1}}$.
- The algebra *P* is Σ-graded: for *σ* ∈ Σ, the degree *σ* part *P_σ* of *P* is the *k*-submodule generated by the elements *S*Δ_{*σ*}, where *S* is an order.
- The subalgebra P₁ has a k-basis consisting of the set O of orders on X. For S, T ∈ O, the product ST in P₁ is equal to ST = S ∪ T. Hence P₁ is commutative.

- Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_{\sigma}.T\Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S.^{\sigma}T}\Delta_{\sigma\tau}$ if $\overline{S.^{\sigma}T}$ is an order, and to 0 otherwise, where ${}^{\sigma}T = \Delta_{\sigma}T\Delta_{\sigma^{-1}}$.
- The algebra *P* is Σ-graded: for *σ* ∈ Σ, the degree *σ* part *P_σ* of *P* is the *k*-submodule generated by the elements *S*Δ_{*σ*}, where *S* is an order.
- The subalgebra P₁ has a k-basis consisting of the set O of orders on X. For S, T ∈ O, the product ST in P₁ is equal to ST = S ∪ T. Hence P₁ is commutative.
- The group Σ acts on \mathcal{P}_1 by conjugation

- Let $\mathcal{P} = \mathcal{E}/\mathcal{N}$, called the algebra of permuted orders on X. It has a k-basis consisting of relations $S\Delta_{\sigma}$, where S is an order and $\sigma \in \Sigma$. The product of $S\Delta_{\sigma}.T\Delta_{\tau}$ in \mathcal{P} is equal to $\overline{S.^{\sigma}T}\Delta_{\sigma\tau}$ if $\overline{S.^{\sigma}T}$ is an order, and to 0 otherwise, where ${}^{\sigma}T = \Delta_{\sigma}T\Delta_{\sigma^{-1}}$.
- The algebra *P* is Σ-graded: for *σ* ∈ Σ, the degree *σ* part *P_σ* of *P* is the *k*-submodule generated by the elements *S*Δ_{*σ*}, where *S* is an order.
- The subalgebra P₁ has a k-basis consisting of the set O of orders on X. For S, T ∈ O, the product ST in P₁ is equal to ST = S ∪ T. Hence P₁ is commutative.
- The group Σ acts on \mathcal{P}_1 by conjugation, and \mathcal{P} is the semidirect product $\mathcal{P}_1 \rtimes \Sigma$.

Serge Bouc (CNRS-LAMFA)

ICRA 2018 10 / 14

If $R \in \mathcal{O}$, then $R^2 = R$.

Serge Bouc (CNRS-LAMFA)

If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = \overline{R \cup S}$

If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = \overline{R \cup S} = Sup_{\mathcal{O}}(R, S)$ or 0

If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = \overline{R \cup S} = Sup_{\mathcal{O}}(R, S)$ or 0, where \mathcal{O} is ordered by inclusion.

ICRA 2018 10 / 14

If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = \overline{R \cup S} = Sup_{\mathcal{O}}(R, S)$ or 0, where \mathcal{O} is ordered by inclusion.

Notation

For $R \in \mathcal{O}$, let $f_R \in \mathcal{P}_1$ defined by

If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = \overline{R \cup S} = Sup_{\mathcal{O}}(R, S)$ or 0, where \mathcal{O} is ordered by inclusion.

Notation

For
$$R \in \mathcal{O}$$
, let $f_R \in \mathcal{P}_1$ defined by $f_R = \sum_{R \subseteq S \in \mathcal{O}} \mu_{\mathcal{O}}(R, S)S$
If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = \overline{R \cup S} = Sup_{\mathcal{O}}(R, S)$ or 0, where \mathcal{O} is ordered by inclusion.

Notation

For $R \in \mathcal{O}$, let $f_R \in \mathcal{P}_1$ defined by $f_R = \sum_{R \subseteq S \in \mathcal{O}} \mu_{\mathcal{O}}(R, S)S$, where $\mu_{\mathcal{O}}$ is the Möbius function of the poset \mathcal{O} .

If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = \overline{R \cup S} = Sup_{\mathcal{O}}(R, S)$ or 0, where \mathcal{O} is ordered by inclusion.

Notation

For $R \in \mathcal{O}$, let $f_R \in \mathcal{P}_1$ defined by $f_R = \sum_{R \subseteq S \in \mathcal{O}} \mu_{\mathcal{O}}(R, S)S$, where $\mu_{\mathcal{O}}$ is

the Möbius function of the poset \mathcal{O} .

Theorem

1 The elements f_R , for $R \in \mathcal{O}$

If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = \overline{R \cup S} = Sup_{\mathcal{O}}(R, S)$ or 0, where \mathcal{O} is ordered by inclusion.

Notation

For $R \in \mathcal{O}$, let $f_R \in \mathcal{P}_1$ defined by $f_R = \sum_{R \subseteq S \in \mathcal{O}} \mu_{\mathcal{O}}(R, S)S$, where $\mu_{\mathcal{O}}$ is

the Möbius function of the poset \mathcal{O} .

Theorem

① The elements f_R , for $R \in \mathcal{O}$, are orthogonal idempotents of \mathcal{P}_1

If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = \overline{R \cup S} = Sup_{\mathcal{O}}(R, S)$ or 0, where \mathcal{O} is ordered by inclusion.

Notation

For $R \in \mathcal{O}$, let $f_R \in \mathcal{P}_1$ defined by $f_R = \sum_{R \subseteq S \in \mathcal{O}} \mu_{\mathcal{O}}(R, S)S$, where $\mu_{\mathcal{O}}$ is

the Möbius function of the poset \mathcal{O} .

Theorem

• The elements f_R , for $R \in \mathcal{O}$, are orthogonal idempotents of \mathcal{P}_1 , and $\sum_{R \in \mathcal{O}} f_R = 1$.

If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = \overline{R \cup S} = Sup_{\mathcal{O}}(R, S)$ or 0, where \mathcal{O} is ordered by inclusion.

Notation

For $R \in \mathcal{O}$, let $f_R \in \mathcal{P}_1$ defined by $f_R = \sum_{R \subseteq S \in \mathcal{O}} \mu_{\mathcal{O}}(R, S)S$, where $\mu_{\mathcal{O}}$ is

the Möbius function of the poset \mathcal{O} .

Theorem

• The elements f_R , for $R \in \mathcal{O}$, are orthogonal idempotents of \mathcal{P}_1 , and $\sum_{R \in \mathcal{O}} f_R = 1$.

2 Moreover
$$\mathcal{P}_1 f_R = k f_R$$
, for $R \in \mathcal{O}$.

If $R \in \mathcal{O}$, then $R^2 = R$. If $R, S \in \mathcal{O}$, then $RS = \overline{R \cup S} = Sup_{\mathcal{O}}(R, S)$ or 0, where \mathcal{O} is ordered by inclusion.

Notation

For $R \in \mathcal{O}$, let $f_R \in \mathcal{P}_1$ defined by $f_R = \sum_{R \subseteq S \in \mathcal{O}} \mu_{\mathcal{O}}(R, S)S$, where $\mu_{\mathcal{O}}$ is

the Möbius function of the poset \mathcal{O} .

Theorem

- The elements f_R , for $R \in \mathcal{O}$, are orthogonal idempotents of \mathcal{P}_1 , and $\sum_{R \in \mathcal{O}} f_R = 1$.
- **2** Moreover $\mathcal{P}_1 f_R = k f_R$, for $R \in \mathcal{O}$.

• The algebra \mathcal{P}_1 is isomorphic to $\prod_{R \in \mathcal{O}} kf_R \cong k^{|\mathcal{O}|}$.

Serge Bouc (CNRS-LAMFA)

ICRA 2018 11 / 14

For $R \in \mathcal{O}$, set $\Sigma_R = \{ \sigma \in \Sigma \mid {}^{\sigma}R = R \}$

For
$$R \in \mathcal{O}$$
, set $\Sigma_R = \{ \sigma \in \Sigma \mid {}^{\sigma}R = R \}$, and $e_R = \sum_{\sigma \in [\Sigma/\Sigma_R]} f_{\sigma_R}$.

ICRA 2018 11 / 14

For
$$R \in \mathcal{O}$$
, set $\Sigma_R = \{ \sigma \in \Sigma \mid {}^{\sigma}R = R \}$, and $e_R = \sum_{\sigma \in [\Sigma/\Sigma_R]} f_{\sigma_R}$.

Theorem

In the elements e_R, for R ∈ [Σ\O], are orthogonal central idempotents of P

ICRA 2018 11 / 14

For
$$R \in \mathcal{O}$$
, set $\Sigma_R = \{ \sigma \in \Sigma \mid {}^{\sigma}R = R \}$, and $e_R = \sum_{\sigma \in [\Sigma/\Sigma_R]} f_{\sigma_R}$.

Theorem

• The elements e_R , for $R \in [\Sigma \setminus \mathcal{O}]$, are orthogonal central idempotents of \mathcal{P} , and $\sum_{R \in [\Sigma \setminus \mathcal{O}]} e_R = 1$.

ICRA 2018 11 / 14

4 3 > 4

For
$$R \in \mathcal{O}$$
, set $\Sigma_R = \{ \sigma \in \Sigma \mid {}^{\sigma}R = R \}$, and $e_R = \sum_{\sigma \in [\Sigma/\Sigma_R]} f_{\sigma_R}$.

Theorem

The elements e_R, for R ∈ [Σ\O], are orthogonal central idempotents of P, and ∑_{R∈[Σ\O]} e_R = 1.
The algebra P is isomorphic to ∏_{R∈[Σ\O]} Pe_R.

< ∃ > <

For
$$R \in \mathcal{O}$$
, set $\Sigma_R = \{ \sigma \in \Sigma \mid {}^{\sigma}R = R \}$, and $e_R = \sum_{\sigma \in [\Sigma/\Sigma_R]} f_{\sigma_R}$.

Theorem

The elements e_R, for R ∈ [Σ\O], are orthogonal central idempotents of P, and ∑_{R∈[Σ\O]} e_R = 1.
The algebra P is isomorphic to ∏_{R∈[Σ\O]} Pe_R.

3 For $R \in \mathcal{O}$, the algebra $\mathcal{P}e_R$ is isomorphic to $Mat_{|\Sigma:\Sigma_R|}(k\Sigma_R)$.

The simple \mathcal{E} -modules

Serge Bouc (CNRS-LAMFA)

· ▲ ≣ ▶ ≣ ∽ � € ICRA 2018 12 / 14

< 🗗 🕨

-

The simple \mathcal{E} -modules

Assume that k is a field.

The simple \mathcal{E} -modules

Assume that k is a field. Recall that $\mathcal{P} = \mathcal{E}/\mathcal{N}$

Assume that k is a field. Recall that $\mathcal{P} = \mathcal{E}/\mathcal{N}$, where \mathcal{N} is nilpotent

E ▶.

Theorem

1 The surjection $\mathcal{E} \longrightarrow \mathcal{P}$

Theorem

The surjection & ——— P induces a one to one correspondence between the simple &-modules and the simple P-modules.

Theorem

The surjection *E* → *P* induces a one to one correspondence between the simple *E*-modules and the simple *P*-modules.
Let *R* ∈ *O*.

- The surjection *E* → *P* induces a one to one correspondence between the simple *E*-modules and the simple *P*-modules.
- **2** Let $R \in \mathcal{O}$. Then $\mathcal{P}f_R$ has a k-basis $\{\Delta_{\sigma}f_R \mid \sigma \in \Sigma\}$,

- The surjection & ——— P induces a one to one correspondence between the simple & modules and the simple P-modules.
- **2** Let $R \in \mathcal{O}$. Then $\mathcal{P}f_R$ has a k-basis $\{\Delta_{\sigma}f_R \mid \sigma \in \Sigma\}$, so $\mathcal{P}f_R \cong_k k\Sigma$.

- 2 Let R ∈ O. Then Pf_R has a k-basis {Δ_σf_R | σ ∈ Σ}, so Pf_R ≃_k kΣ. It is an (R, kΣ_R)-bimodule

- 2 Let R ∈ O. Then Pf_R has a k-basis {Δ_σf_R | σ ∈ Σ}, so Pf_R ≃_k kΣ. It is an (R, kΣ_R)-bimodule, free as a right kΣ_R-module.

- 2 Let R ∈ O. Then Pf_R has a k-basis {Δ_σf_R | σ ∈ Σ}, so Pf_R ≃_k kΣ. It is an (R, kΣ_R)-bimodule, free as a right kΣ_R-module.
- The simple P-modules (up to isomorphism) are the modules of the form Pf_R ⊗_{kΣ_R} W

- The surjection & ——— P induces a one to one correspondence between the simple &-modules and the simple P-modules.
- 2 Let R ∈ O. Then Pf_R has a k-basis {Δ_σf_R | σ ∈ Σ}, so Pf_R ≃_k kΣ. It is an (R, kΣ_R)-bimodule, free as a right kΣ_R-module.
- Some interpret in the system of the system of the form Pf_R ⊗_{kΣ_R} W, where R ∈ [Σ\O]

Theorem

- 2 Let R ∈ O. Then Pf_R has a k-basis {Δ_σf_R | σ ∈ Σ}, so Pf_R ≃_k kΣ. It is an (R, kΣ_R)-bimodule, free as a right kΣ_R-module.
- The simple P-modules (up to isomorphism) are the modules of the form Pf_R ⊗_{kΣ_R} W, where R ∈ [Σ\O], and W is a simple kΣ_R-module (up to isomorphism).

< ∃ > <

Theorem

- 2 Let R ∈ O. Then Pf_R has a k-basis {Δ_σf_R | σ ∈ Σ}, so Pf_R ≃_k kΣ. It is an (R, kΣ_R)-bimodule, free as a right kΣ_R-module.
- The simple P-modules (up to isomorphism) are the modules of the form Pf_R ⊗_{kΣ_R} W, where R ∈ [Σ\O], and W is a simple kΣ_R-module (up to isomorphism).
- If char(k) = 0 or char(k) > n, then \mathcal{P} is semisimple

Theorem

- 2 Let R ∈ O. Then Pf_R has a k-basis {Δ_σf_R | σ ∈ Σ}, so Pf_R ≃_k kΣ. It is an (R, kΣ_R)-bimodule, free as a right kΣ_R-module.
- The simple P-modules (up to isomorphism) are the modules of the form Pf_R ⊗_{kΣ_R} W, where R ∈ [Σ\O], and W is a simple kΣ_R-module (up to isomorphism).

• If char(k) = 0 or char(k) > n, then \mathcal{P} is semisimple, and $\mathcal{N} = J(\mathcal{E})$.

イロト イ理ト イヨト イヨト

Serge Bouc (CNRS-LAMFA)

▶ < ≣ ▶ ≣ 少へで ICRA 2018 13 / 14

Proposition

Let R be an order on X.

э **ICRA 2018** 13 / 14

3

・ロト ・回 ・ ・ 回 ・ ・

Proposition

Let R be an order on X. If $S \in C(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

 $\beta_R(S): \sigma \in \Sigma \mapsto$

< □ > < ---->

- 4 ⊒ →

▲ ■ ▶ ■ • ○ Q C ICRA 2018 13 / 14

Proposition

Let R be an order on X. If $S \in C(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_{\mathcal{R}}(S): \sigma \in \Sigma \mapsto \left\{ \begin{array}{cc} \tau\sigma & \text{if } \tau \in \Sigma, \ \Delta \subseteq \Delta_{\tau^{-1}}S \subseteq {}^{\sigma}R \\ \end{array} \right.$$

Image: A matrix

→ Ξ →

▲ ■ ト ■ つへで ICRA 2018 13 / 14

Proposition

Let R be an order on X. If $S \in C(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_{R}(S): \sigma \in \Sigma \mapsto \begin{cases} \tau \sigma & \text{if } \tau \in \Sigma, \ \Delta \subseteq \Delta_{\tau^{-1}}S \subseteq {}^{\sigma}R \\ 0 & \text{if no such } \tau. \end{cases}$$

I ≡ ►

▲ ■ ト ■ つへで ICRA 2018 13 / 14

Proposition

Let R be an order on X. If $S \in C(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_{R}(S): \sigma \in \Sigma \mapsto \begin{cases} \tau \sigma & \text{if } \tau \in \Sigma, \ \Delta \subseteq \Delta_{\tau^{-1}}S \subseteq {}^{\sigma}R \\ 0 & \text{if no such } \tau. \end{cases}$$

• The map $\beta_R(S)$ is well defined

< □ > < ---->

★ ∃ >
Let R be an order on X. If $S \in C(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_{R}(S): \sigma \in \Sigma \mapsto \begin{cases} \tau \sigma & \text{if } \tau \in \Sigma, \ \Delta \subseteq \Delta_{\tau^{-1}}S \subseteq {}^{\sigma}R \\ 0 & \text{if no such } \tau. \end{cases}$$

• The map $\beta_R(S)$ is well defined, and $\beta_R(S) \in End_{k\Sigma_R}(k\Sigma)$.

< □ > < ---->

★ ∃ >

Let R be an order on X. If $S \in C(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_R(S): \sigma \in \Sigma \mapsto \begin{cases} \tau \sigma & \text{if } \tau \in \Sigma, \ \Delta \subseteq \Delta_{\tau^{-1}}S \subseteq {}^{\sigma}R \\ 0 & \text{if no such } \tau. \end{cases}$$

1 The map $\beta_R(S)$ is well defined, and $\beta_R(S) \in End_{k\Sigma_R}(k\Sigma)$.

2 The map $S \mapsto \beta_R(S)$ extends to an algebra homomorphism $k\mathcal{C}(X, X) = \mathcal{R}_X \to End_{k\Sigma_R}(k\Sigma)$

- 4 ⊒ →

Image: Image:

Let R be an order on X. If $S \in C(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_R(S): \sigma \in \Sigma \mapsto \begin{cases} \tau \sigma & \text{if } \tau \in \Sigma, \ \Delta \subseteq \Delta_{\tau^{-1}}S \subseteq {}^{\sigma}R \\ 0 & \text{if no such } \tau. \end{cases}$$

1 The map $\beta_R(S)$ is well defined, and $\beta_R(S) \in End_{k\Sigma_R}(k\Sigma)$.

2 The map $S \mapsto \beta_R(S)$ extends to an algebra homomorphism $k\mathcal{C}(X, X) = \mathcal{R}_X \to End_{k\Sigma_R}(k\Sigma)$, which endows $k\Sigma$ with a structure of $(\mathcal{R}_X, k\Sigma_R)$ -bimodule.

→ Ξ →

A D > A A P >

Let R be an order on X. If $S \in C(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_{R}(S): \sigma \in \Sigma \mapsto \begin{cases} \tau \sigma & \text{if } \tau \in \Sigma, \ \Delta \subseteq \Delta_{\tau^{-1}}S \subseteq {}^{\sigma}R \\ 0 & \text{if no such } \tau. \end{cases}$$

1 The map $\beta_R(S)$ is well defined, and $\beta_R(S) \in End_{k\Sigma_R}(k\Sigma)$.

- **2** The map $S \mapsto \beta_R(S)$ extends to an algebra homomorphism $k\mathcal{C}(X, X) = \mathcal{R}_X \to End_{k\Sigma_R}(k\Sigma)$, which endows $k\Sigma$ with a structure of $(\mathcal{R}_X, k\Sigma_R)$ -bimodule.
- **3** If W is a simple $k\Sigma_R$ -module

→ Ξ →

Let R be an order on X. If $S \in C(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_{R}(S): \sigma \in \Sigma \mapsto \begin{cases} \tau \sigma & \text{if } \tau \in \Sigma, \ \Delta \subseteq \Delta_{\tau^{-1}}S \subseteq {}^{\sigma}R \\ 0 & \text{if no such } \tau. \end{cases}$$

1 The map $\beta_R(S)$ is well defined, and $\beta_R(S) \in End_{k\Sigma_R}(k\Sigma)$.

- The map S → β_R(S) extends to an algebra homomorphism kC(X, X) = R_X → End_{kΣ_R}(kΣ), which endows kΣ with a structure of (R_X, kΣ_R)-bimodule.
- If W is a simple $k\Sigma_R$ -module, then $\Lambda_{R,W} = k\Sigma \otimes_{k\Sigma_R} W$ is a simple \mathcal{R}_X -module.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let R be an order on X. If $S \in C(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_{R}(S): \sigma \in \Sigma \mapsto \begin{cases} \tau \sigma & \text{if } \tau \in \Sigma, \ \Delta \subseteq \Delta_{\tau^{-1}}S \subseteq {}^{\sigma}R \\ 0 & \text{if no such } \tau. \end{cases}$$

• The map $\beta_R(S)$ is well defined, and $\beta_R(S) \in End_{k\Sigma_R}(k\Sigma)$.

- **2** The map $S \mapsto \beta_R(S)$ extends to an algebra homomorphism $k\mathcal{C}(X, X) = \mathcal{R}_X \to End_{k\Sigma_R}(k\Sigma)$, which endows $k\Sigma$ with a structure of $(\mathcal{R}_X, k\Sigma_R)$ -bimodule.
- If W is a simple $k\Sigma_R$ -module, then $\Lambda_{R,W} = k\Sigma \otimes_{k\Sigma_R} W$ is a simple \mathcal{R}_X -module.
- If (R', W') is another pair consisting of an order R' on X and a simple kΣ_{R'}-module

< ロト < 同ト < ヨト < ヨト

Let R be an order on X. If $S \in C(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_{R}(S): \sigma \in \Sigma \mapsto \begin{cases} \tau \sigma & \text{if } \tau \in \Sigma, \ \Delta \subseteq \Delta_{\tau^{-1}}S \subseteq {}^{\sigma}R \\ 0 & \text{if no such } \tau. \end{cases}$$

• The map $\beta_R(S)$ is well defined, and $\beta_R(S) \in End_{k\Sigma_R}(k\Sigma)$.

- **2** The map $S \mapsto \beta_R(S)$ extends to an algebra homomorphism $k\mathcal{C}(X, X) = \mathcal{R}_X \to End_{k\Sigma_R}(k\Sigma)$, which endows $k\Sigma$ with a structure of $(\mathcal{R}_X, k\Sigma_R)$ -bimodule.
- If W is a simple $k\Sigma_R$ -module, then $\Lambda_{R,W} = k\Sigma \otimes_{k\Sigma_R} W$ is a simple \mathcal{R}_X -module.
- If (R', W') is another pair consisting of an order R' on X and a simple $k\Sigma_{R'}$ -module, then the \mathcal{R}_X -modules $\Lambda_{R,W}$ and $\Lambda_{R',W'}$ are isomorphic

< ロト < 同ト < ヨト < ヨト

Let R be an order on X. If $S \in C(X, X)$, define a k-endomorphism $\beta_R(S)$ of $k\Sigma$ by

$$\beta_{R}(S): \sigma \in \Sigma \mapsto \begin{cases} \tau \sigma & \text{if } \tau \in \Sigma, \ \Delta \subseteq \Delta_{\tau^{-1}}S \subseteq {}^{\sigma}R \\ 0 & \text{if no such } \tau. \end{cases}$$

• The map $\beta_R(S)$ is well defined, and $\beta_R(S) \in End_{k\Sigma_R}(k\Sigma)$.

- **2** The map $S \mapsto \beta_R(S)$ extends to an algebra homomorphism $k\mathcal{C}(X, X) = \mathcal{R}_X \to End_{k\Sigma_R}(k\Sigma)$, which endows $k\Sigma$ with a structure of $(\mathcal{R}_X, k\Sigma_R)$ -bimodule.
- If W is a simple $k\Sigma_R$ -module, then $\Lambda_{R,W} = k\Sigma \otimes_{k\Sigma_R} W$ is a simple \mathcal{R}_X -module.
- If (R', W') is another pair consisting of an order R' on X and a simple $k\Sigma_{R'}$ -module, then the \mathcal{R}_X -modules $\Lambda_{R,W}$ and $\Lambda_{R',W'}$ are isomorphic if and only if the pairs (R, W) and (R', W') are conjugate by Σ .

(日) (周) (三) (三)

Serge Bouc (CNRS-LAMFA)

・ロト ・聞ト ・ヨト ・ヨト

• If $R = \Delta$, then $\Sigma_R = \Sigma$

-

• If $R = \Delta$, then $\Sigma_R = \Sigma$, and \mathcal{R}_X maps surjectively to $k\Sigma$, by $S \mapsto \sigma$ if $S = \Delta_{\sigma}$,

- 4 ∃ ≻ 4

 If R = Δ, then Σ_R = Σ, and R_X maps surjectively to kΣ, by S → σ if S = Δ_σ, and S → 0 is there is no such σ ∈ Σ.

< ∃ >

- If R = Δ, then Σ_R = Σ, and R_X maps surjectively to kΣ, by S → σ if S = Δ_σ, and S → 0 is there is no such σ ∈ Σ.
- If R is a total order, then $\Sigma_R = \{1\}$

- If R = Δ, then Σ_R = Σ, and R_X maps surjectively to kΣ, by S → σ if S = Δ_σ, and S → 0 is there is no such σ ∈ Σ.
- If R is a total order, then $\Sigma_R = \{1\}$, and $\mathcal{P}e_R \cong Mat_{n!}(k)$.

- If R = Δ, then Σ_R = Σ, and R_X maps surjectively to kΣ, by S → σ if S = Δ_σ, and S → 0 is there is no such σ ∈ Σ.
- If R is a total order, then Σ_R = {1}, and Pe_R ≅ Mat_{n!}(k). In this case kΣ becomes a simple R_X-module.

- If R = Δ, then Σ_R = Σ, and R_X maps surjectively to kΣ, by S → σ if S = Δ_σ, and S → 0 is there is no such σ ∈ Σ.
- If R is a total order, then Σ_R = {1}, and Pe_R ≅ Mat_{n!}(k). In this case kΣ becomes a simple R_X-module.

Remark: Which finite groups can occur as Σ_R ?

- If R = Δ, then Σ_R = Σ, and R_X maps surjectively to kΣ, by S → σ if S = Δ_σ, and S → 0 is there is no such σ ∈ Σ.
- If R is a total order, then Σ_R = {1}, and Pe_R ≅ Mat_{n!}(k). In this case kΣ becomes a simple R_X-module.

Remark: Which finite groups can occur as Σ_R ? Answer: all!

- If $R = \Delta$, then $\Sigma_R = \Sigma$, and \mathcal{R}_X maps surjectively to $k\Sigma$, by $S \mapsto \sigma$ if $S = \Delta_{\sigma}$, and $S \mapsto 0$ is there is no such $\sigma \in \Sigma$.
- If R is a total order, then Σ_R = {1}, and Pe_R ≅ Mat_{n!}(k). In this case kΣ becomes a simple R_X-module.

Remark: Which finite groups can occur as Σ_R ? Answer: all! (Birkhoff 1946)

- If R = Δ, then Σ_R = Σ, and R_X maps surjectively to kΣ, by S → σ if S = Δ_σ, and S → 0 is there is no such σ ∈ Σ.
- If R is a total order, then Σ_R = {1}, and Pe_R ≃ Mat_{n!}(k). In this case kΣ becomes a simple R_X-module.

Remark: Which finite groups can occur as Σ_R ? Answer: all! (Birkhoff 1946, Thornton 1972)

- If R = Δ, then Σ_R = Σ, and R_X maps surjectively to kΣ, by S → σ if S = Δ_σ, and S → 0 is there is no such σ ∈ Σ.
- If R is a total order, then Σ_R = {1}, and Pe_R ≃ Mat_{n!}(k). In this case kΣ becomes a simple R_X-module.

Remark: Which finite groups can occur as Σ_R ? Answer: all! (Birkhoff 1946, Thornton 1972, Barmak-Minian 2009).